Тонкая куча
Тонкая куча — это структура данных, реализующая приоритетную очередь с теми же асимптотическими оценками, что и фиббоначиева куча, но имеющая большую практическую ценность из-за меньших констант.
Тонкие кучи, как и многие другие кучеобразные структуры, аналогичны биномиальным кучам.
Содержание
Тонкое дерево
Определение: |
Тонкое дерево (thin tree) | ранга — это дерево, которое может быть получено из биномиального дерева удалением у нескольких внутренних, то есть не являющихся корнем или листом, узлов самого левого сына.
Заметим, что у листьев детей нет, а если у корня удалить самого левого сына, то превратится в . Ранг тонкого дерева равен количеству детей корня.
Для любого узла
в дереве обозначим: — количество детей узла ; — ранг соответствующего узла в биномиальном дереве .Свойства тонкого дерева
Утверждение: |
Тонкое дерево обладает следующими свойтсвами:
|
Тонкая куча
Определение: |
Тонкий лес (thin forest) — это набор тонких деревьев, ранги которых не обязательно попарно различны. |
Утверждение: |
Для любого натурального числа существует тонкий лес, который содержит ровно элементов и состоит из тонких деревьев попарно различных рангов. |
Действительно, любой биномиальный лес является тонким, а для биномиального леса рассматриваемое утверждение справедливо. |
Определение: |
Тонкая куча (thin heap) — это кучеобразно нагруженный тонкий лес. |
Пусть — максимально возможный ранг узла в тонкой куче, содержащей элементов.
Теорема (О максимальном ранге узла): |
В тонкой куче из элементов , где — золотое сечение. |
Доказательство: |
Сначала покажем, что узел ранга в тонком дереве имеет не менее потомков, включая самого себя, где — -е число Фибоначчи, определяемое соотношениями , , для .Действительно, пусть — минимально возможное число узлов, включая самого себя, в тонком дереве ранга . По свойствам и тонкого дерева получаем следующие соотношения:для Числа Фибоначчи удовлетворяют этому же рекуррентному соотношению, причем неравенство можно заменить равенством. Отсюда по индукции следует, что для любых . Неравенство хорошо известно.Теперь убедимся в том, что максимально возможный ранг Отсюда следует, что тонкого дерева в тонкой куче, содержащей элементов, не превосходит числа . Действительно, выберем в тонкой куче дерево максимального ранга. Пусть — количество вершин в этом дереве, тогда . . |
Представление тонкой кучи
Поскольку при работе с тонкой кучей ссылка на родителя требуется только у самого левого ее ребенка, можно хранить ее вместо ссылки на левого сына этой вершины.
Таким образом, для эффективной работы тонкой кучи необходимы следующие поля узла:
- — ключ (вес) элемента;
- — указатель на самого левого ребенка узла;
- — указатель на правого брата узла, либо на следующий корень, если текущий узел корень;
- — указатель на левого брата узла, либо на родителя, если текущий узел самый левый, либо null, если это первый корень списка;
- — ранг узла (количество дочерних узлов данного узла).
Отдельно должен храниться односвязный список корней, корень с минимальным ключом должне быть первым в этом списке.
Для ускорения проверки на тонкость (thinness) можно отдельно хранить помеченность вершины.
Также в вершине можно хранить любую дополнительную информацию.
Операции над тонкой кучей
Рассмотрим операции, которые можно производить над тонкой кучей. Время работы указано в таблице:
Многие операции над тонкой кучей выполняются так же, как и над фиббоначиевой.
Для амортизационного анализа применим метод потенциалов.
Пусть функция потенциала определена как
где — это количество тонких деревьев в куче, а — это количество помеченных вершин.Утверждение: |
Определённый таким образом потенциал обладает свойствами:
|
makeHeap
Возвращаем новый пустой корневой список, его потенциал
.Стоимость
.insert
Создаем новое тонкое дерево из единственного узла с ключом
, добавляем в корневой список на первое место, если ключ минимален, иначе на второе. Потенциал увеличивается на 1.Стоимость
.getMin
Обращаемся к первому корневому узлу списка, потенциал
не меняется.Стоимость
.meld
Сливаем корневые списки, ставя первым тот список, где ключ первого корня минимален. Суммарный потенциал
не меняется.Стоимость
.extractMin
- Удаляем корень с минимальным ключом из корневого списка.
- Для всех его помеченных детей уменьшаем ранг и делаем их нормальными.
- Cливаем детей с корневым списком.
- Объединяем, пока возможно, тонкие деревья одного ранга.
Это можно сделать, например, с помощью вспомогательного массива размером
, в -ой ячейке которго хранится корень тонкого дерева ранга .Изначально массив пуст, а мы добавляем в него все деревья нашего корневого списка.
При добавлении нового дерева мы, пока возможно, связываем его с деревом такого же ранга, а затем пытаемся добавить новое дерево с рангом на
больше.Пусть мы сделали
связывающих шагов (linking steps) во время добавления в массив.Мы удалили корень из списка за
, затем за нормализовали детей корня и добавили в корневой список, а затем за получили новый корневой список, в котором за нашли минимальный корень и подвесили список за него.Получили фактическую стоимость
. С другой стороны, при добавлении детей в список мы увеличили потенциал не более чем на , а каждый связывающий шаг уменьшает наш потенциал на .Cтоимость
.decreaseKey
Стоимость
.delete
Сначала выполняем
этого элемента до , затем выполняем .Стоимость
.