Материал из Викиконспекты
Регулярные языки: два определения и их эквивалентность
Определение: |
Будем обозначать через [math]Reg_t - [/math] языки [math]t[/math]-го поколения. Рассмотрим языки нулевого поколения: [math]Reg_0=\left\{\varnothing, \left\{\varepsilon \right\}, \left\{c_1 \right\}, \left\{c_2 \right\} ... \left\{c_k \right\} \right\}[/math], ([math]k - [/math]размер алфавита). Пусть имеем [math]Reg_i[/math]. Построим [math]Reg_{i+1} = Reg_i \cup \left\{L \cup M, LM, L^*| L, M \in Reg_i\right\}[/math]. Тогда по определению множество всех регулярных языков: [math]Reg = \bigcup_{i=0}^{\infty}Reg_i[/math]. |
Определение: |
Пусть [math]A=\left\{L \right\}[/math]. [math]A - [/math] хорошее, если
1) [math] Reg_0 \subset A [/math]
2) [math] L_1, L_2 \in A \Rightarrow L_1 \cap L_2 \in A, L_1L_2 \in A, L_1^* \in A [/math]
Тогда регулярным языком называется [math]Reg'=\bigcap_{\text{A- xop.}}A[/math]. |
Теорема: |
Определения 1 и 2 эквивалентны. |
Доказательство: |
[math]\triangleright[/math] |
Докажем, что [math]Reg \subset Reg'[/math] и [math]Reg' \subset Reg[/math].
- [math]Reg \subset Reg'[/math]:
будем доказывать по индукции. Заметим, что [math]Reg_0 \subset Reg'[/math] по определению. Пусть [math]Reg_i \subset Reg'[/math]. Тогда [math]Reg_{i+1} \subset Reg'[/math] по способу построения множества [math]Reg_{i+1}[/math]. Действительно, из того, что [math]Reg_i \subset Reg'[/math] следует, что [math]\forall A: Reg_i \subset A[/math]. А так как по построению [math]Reg_{i+1}[/math] останется хорошим, то и [math]\forall A: Reg_{i+1} \subset A[/math].
- [math]Reg' \subset Reg[/math]:
по определению [math]Reg - [/math]хорошее множество. |
[math]\triangleleft[/math] |