Определение: |
Обратная матрица - такая матрица [math]A^{-1}[/math], при умножении на которую, исходная матрица [math]A[/math] даёт в результате единичную матрицу [math]E[/math]
- [math]\! AA^{-1} = A^{-1}A = E[/math]
|
Критерий обратимости матрицы
Теорема: |
Квадратная матрица [math]A[/math] обратима тогда и только тогда, когда она невырожденная, то есть [math]\det A \neq 0[/math]. |
Доказательство: |
[math]\triangleright[/math] |
определитель НЕ равен нулю
- Если матрица [math]A[/math] обратима, то [math]AB = E[/math] для некоторой матрицы [math]B[/math]. Тогда, если квадратные матрицы одного и того же порядка, то [math]\det AB = \det A \cdot \det B[/math]:
- [math]1 = \det E = \det AB = \det A \cdot \det B[/math], следовательно, [math]\det A \neq 0, \det B \neq 0[/math].
- Теперь докажем обратное утверждение. Пусть [math]\det A \ne 0[/math]. Положим [math]B = \frac{1}{\det A}A^{*}[/math]
Тогда [math]AB = A(\frac{1}{detA}A^{*}) = \frac{1}{detA}(AA^{*})[/math] то есть, [math]A[/math] обратима справа.
- Поскольку для квадратной матрицы одно и двусторонняя обратимость эквивалентны (Квадратная матрица [math]A[/math] обратима справа тогда и только тогда, когда она обратима слева.), получаем, что [math]A[/math] обратима и [math]A^{-1} = B = \frac{1}{detA}A^{*}[/math]
[math]A^{*}[/math] - присоединенная матрица |
[math]\triangleleft[/math] |
Свойства обратной матрицы
- [math]\det A^{-1} = \frac{1}{\det A}[/math]
- [math]\ (AB)^{-1} = B^{-1}A^{-1}[/math]
- [math]\ (A^T)^{-1} = (A^{-1})^T[/math]
- [math]\ (kA)^{-1} = k^{-1}A^{-1}[/math]
Методы нахождения обратной матрицы
Метод Гаусса для нахождения обратной матрицы
Возьмём две матрицы: саму [math]A[/math] и [math]E[/math]. Приведём матрицу [math]A[/math] к единичной матрице методом Гаусса. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной [math]A^-1[/math].
Пример
Найдем обратную матрицу для матрицы
- [math] A =
\begin{bmatrix}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{bmatrix}.
[/math]
- 1) Для начала убедимся, что ее определитель не равен нулю(она невырожденная).
- 2) Справа от исходной матрицы припишем единичную.
- [math] [ A | I ] =
\left[ \begin{array}{rrr|rrr}
2 & -1 & 0 & 1 & 0 & 0\\
-1 & 2 & -1 & 0 & 1 & 0\\
0 & -1 & 2 & 0 & 0 & 1
\end{array} \right].
[/math]
- 3) Методом Гаусса приведем левую матрицу к единичной, применяя все операции одновременно и к левой, и к правой матрицам.
- [math] [ I | B ] =
\left[ \begin{array}{rrr|rrr}
1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4}\\[3pt]
0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2}\\[3pt]
0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array} \right].
[/math]
- 4) [math]A^{-1} = B[/math]
Метод присоединенной матрицы
[math]A^{-1} = \frac{\widehat{A}^T}{\det A}[/math], где [math] \widehat{A}[/math] — присоединенная матрица;
Определение: |
Присоединенная(союзная, взаимная) матрица — матрица, составленная из алгебраических дополнений для соответствующих элементов исходной матрицы. |
[math]{C}^{*}= \begin{pmatrix}
{A}_{11} & {A}_{12} & \cdots & {A}_{1n} \\
{A}_{21} & {A}_{22} & \cdots & {A}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
{A}_{n1} & {A}_{n2} & \cdots & {A}_{nn} \\
\end{pmatrix}[/math]
Исходная матрица:
[math]{A}= \begin{pmatrix}
{a}_{11} & {a}_{12} & \cdots & {a}_{1n} \\
{a}_{21} & {a}_{22} & \cdots & {a}_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
{a}_{n1} & {a}_{n2} & \cdots & {a}_{nn} \\
\end{pmatrix}[/math]
Где:
- [math]{C}^{*}[/math] — присоединённая(союзная, взаимная) матрица;
- [math]{A}_{ij}[/math] — алгебраические дополнения исходной матрицы;
- [math]{a}_{ij}[/math] — элементы исходной матрицы.
Алгебраическим дополнением элемента [math]\ a_{ij}[/math] матрицы [math]\ A[/math] называется число
[math]\ A_{ij}=(-1)^{i+j}M_{ij}[/math],
где [math]\ M_{ij}[/math] — дополнительный минор, определитель матрицы, получающейся из исходной матрицы [math]\ A[/math] путем вычёркивания i -й строки и j -го столбца.
[math]M_{ij} = det\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1(j-1)} & a_{1(j+1)} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{(i-1)1} & a_{(i-1)2} & \cdots & a_{(i-1)(j-1)} & a_{(i-1)(j+1)} & \cdots & a_{(i-1)n} \\
a_{(i+1)1} & a_{(i+1)2} & \cdots & a_{(i+1)(j-1)} & a_{(i+1)(j+1)} & \cdots & a_{(i+1)n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{n(j-1)} & a_{n(j+1)} & \cdots & a_{nn} \\
\end{pmatrix}[/math]
Алгоритм получения обратной матрицы
- заменить каждый элемент исходной матрицы на его алгебраическое дополнение,
- транспонировать полученную матрицу - в результате будет получена союзная матрица,
- разделить каждый элемент союзной матрицы на определитель исходной матрицы.
[math]A^{-1} = (C^*)^T \times \frac{1}{det A}[/math]
Ссылки