Определитель линейного оператора. Внешняя степень оператора.

Материал из Викиконспекты
Перейти к: навигация, поиск

Определитель линейного оператора

Определение:
Пусть [math]\mathcal{A} \colon X \to X[/math] линейный оператор в некотором базисе [math]\left\{ e \right\}_{i = 1}^{n}\[/math] линейного пространства [math]X[/math] над полем [math]F[/math]. Тогда определителем линейного оператора [math]\mathcal{A}[/math] называется детерминант [матрицы линейного оператора].


Определение:
Пусть [math]\mathcal{A} \colon X \to X[/math] — автоморфизм. Тогда [math]det||A|| = det\{\mathcal{A}e_1, \mathcal{A}e_2, ... , \mathcal{A}e_n\} = \sum\limits_{(j_1,j_2,...,j_n)} (-1)^{[j_1,j_2,...,j_n]}(\alpha_{j_1}^1\alpha_{j_2}^2...\alpha_{j_n}^n). [/math]


Лемма:
Пусть [math]\mathcal{A} \colon X \to X[/math] — автоморфизм в [math]\left\{ e \right\}_{i = 1}^{n}\ \Leftrightarrow [/math] [math] A = ||\alpha_{k}^i|| [/math], то есть [math](\mathcal{A}e_k)^i = \alpha_{n}^i, [/math] [math] \mathcal{A}e_k = \sum \alpha_{k}^ie_i [/math].
Тогда [math] det\mathcal{A} = detA = det||\alpha_{k}^i||[/math]