Материал из Викиконспекты
Лемма: |
Пусть [math]\mathcal{A}: X\to X[/math], [math]p(\mathcal{A})[/math]- полином от [math]\mathcal{A}[/math]. Тогда [math]Ker \;p(\mathcal{A})[/math] - инвариантное п.п. [math]\mathcal{A}[/math] (возможно и тривиальное). |
Доказательство: |
[math]\triangleright[/math] |
Пусть [math]x \in Ker \;p(\mathcal{A})[/math], т.е. [math]p(\mathcal{A})x = 0[/math].
[math]p(\mathcal{A})(\mathcal{A}x) = \mathcal{A}(p(\mathcal{A})x) = \mathcal{A}(0) = 0[/math]. Таким образом [math]\mathcal{A}(Ker \; p(\mathcal{A})) \subset Ker \; p(\mathcal{A})[/math]. |
[math]\triangleleft[/math] |
Теорема: |
Пусть [math]p_{\mathcal{A}}(\lambda)[/math] - минимальный полином [math]\mathcal{A}[/math], [math]p_{\mathcal{A}}(\lambda) = \displaystyle\prod_{i=1}^k p_i(\lambda)[/math], где [math]p_i(\lambda)[/math] - взаимно простые делители мин. полинома. [math]\deg \; p_i(\lambda)\gt 0[/math] (где [math]i = \overline{1,k}[/math]). Тогда [math]\ker\;p_i(\mathcal{A})[/math] - нетривиальные инвариантные п.п. [math]\mathcal{A}[/math]. |
Доказательство: |
[math]\triangleright[/math] |
1) Пусть [math]\ker p_i(\mathcal{A}) = X \Rightarrow p_i(\lambda)[/math] - аннулирующий полином. Но [math]\deg p_i(\lambda)\lt \deg \; p_{\mathcal{A}}(\lambda)[/math] !!!. Значит, [math]Ker \; p_i(\lambda) \ne X[/math].
2) Пусть [math]Ker \; p_i(\mathcal{A}) = \{0_x\}[/math].
[math]p_{\mathcal{A}}(\lambda) = p_i(\lambda)p_i'(\lambda)[/math], где [math]p_i'(\lambda) = \displaystyle \prod_{\underset {s \ne i}{s = 1}}^k p_i(\lambda)[/math].
[math]Ker \; p_{\mathcal{A} } = X = Ker\; \underbrace{p_i(\mathcal{A})}_{\{0_x\}} \dotplus Ker\; p_i'(\mathcal{A})[/math].
[math]\dim X = n = 0 + n \Rightarrow \dim Ker\; p_i'(\mathcal{A}) = n \Rightarrow Ker \; p_i'(\mathcal{A}) = X[/math], далее см. 1). |
[math]\triangleleft[/math] |