Теорема Фари
Теорема была независимо доказана Клаусом Вагнером в 1936 года, Иштваном Фари в 1948ом году и Штейном в 1951ом году.
Определения
Определение: |
Триангуляция графа — представление графа на плоскости в таком виде, что каждая его грань ограничена тремя ребрами (является треугольником). |
Определение: |
Разделяющий треугольник — цикл длины 3 в графе G, внутри и снаружи которого находятся вершины графа. |
Разделяющий треугольник представлен на рисунке 1.
Теорема
Теорема (Фари): |
Любой планарный граф имеет представление на плоскости, в котором все его ребра будут прямыми. |
Доказательство: |
Докажем теорему для плоской триангуляции графа G. Ее можно достичь, добавив в G необходимое количество ребер. Применим индукцию по числу вершин V(G). Предположим, что графы с числом вершин, меньшим V, мы можем нарисовать требуемым образом. База: V=3 — тривиально Переход: V>=4 Рассмотрим ребро vw. Если в G нет разделяющих треугольников, то vw – любое. Иначе vw – ребро, инцидентное вершине, находящейся внутри самого глубокого разделяющего треуголька в G. Тогда vw – граница двух граней vwp & vwq. Картинка 2. Если vw не в разделяющем треугольнике p & q – любые общие соседи v и w. Пусть (vp, vw, vq, vx_1, vx_2 … vx_k) & (wq, wv, wp, wy_1, wy_2 … wy_l) – обход по часовой стрелке ребер, исходящих соостветсвенно из v и w. Пусть G' – планарная триангуляция, полученная из G стягиванием ребра vw в вершину s. Заменим пары параллельных ребер vq & wq на sq и vp & wp на sp. Получим вершину s, из которой исходят ребра (sp, sy_1, sy_2 … sy_l, sq, sx_1, sx_2 … sx_k) – по часовой стрелке. Картинка 3. Мы получили граф G', с меньшим числом вершин = V - 1 — то есть его можно уложить на плоскости требуемым образом: все ребра прямые (и сохранен обход по часовой стрелке ребер инцидентных s). Для любого E>0 обозначим C_E(s) — круг радиуса E, с вершиной s в центре. Для каждого соседа t вершины s в графе G' обозначим R_E(t) область, содержащую множество всех окрытых отрезков от t до каждой точки из C_E(s). Возьмем E равным минимуму из всех расстояний от вершины s до инцидентных ей вершин и до отрезков, проходящих мимо нее . Картинка 4.2 Тогда получим, что все соседи t вершины s находятся снаружи C_E(s) и только ребра G', пересекающие R_E(t), являются инцидентными s. Картинка 4.1 Проведем линию L через вершину s так, чтобы вершина p лежла с одной ее стороны, а q — с другой (иначе L наложится на ребра sp & sq. ), и L никакое из ребер {sx_i |