Алгоритм Хаффмана для n ичной системы счисления

Материал из Викиконспекты
Перейти к: навигация, поиск

Алгоритм

Для построения [math]n[/math]-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а [math]n[/math] букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором [math]n[/math] букв заменяются на одну, приводит к уменьшению числа букв на [math]n-1[/math]; так как для построения [math]n[/math]-ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из [math]n[/math] букв (сопоставляемых [math]n[/math] сигналам кода), то необходимо, чтобы число [math]m[/math] букв первоначального алфавита было представимо в виде [math]n = m + k(m - 1[/math] ),[math]k \in \mathbb{Z}[/math]. Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение [math]n[/math]-ичного кода Хаффмана и доказательство его оптимальности (среди всех [math]n[/math]-ичных кодов) проводятся уже точно так же, как и случае двоичного кода.

Пример

Возьмем какое-то слово,состоящее из букв:[math]\[/math] а, б, в, г, д, е [math]\} [/math], а набор весов [math]W=\{4, 1, 1, 3\}[/math]:

Узел и м п с
Вес 4 1 1 3

По алгоритму возьмем два символа с наименьшей частотой — это м и п. Сформируем из них новый узел мп весом 2 и добавим его к списку узлов:

Узел и мп с
Вес 4 2 3

Затем объединим в один узел узлы мп и c:

Узел и мпс
Вес 4 5

И, наконец, объединяем два узла и и мпс. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:

Символ и м п с
Код 0 100 101 11