Алгоритм Хаффмана для n ичной системы счисления
Версия от 23:46, 11 декабря 2013; 79.175.3.147 (обсуждение)
Алгоритм
Для построения
-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором букв заменяются на одну, приводит к уменьшению числа букв на ; так как для построения -ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из букв (сопоставляемых сигналам кода), то необходимо, чтобы число букв первоначального алфавита было представимо в виде ), . Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение -ичного кода Хаффмана и доказательство его оптимальности (среди всех -ичных кодов) проводятся уже точно так же, как и случае двоичного кода.Пример
Корректность алгоритма Хаффмана для -ичной системы счисления
Доказательство аналогично тому,что представлено в теме Алгоритм Хаффмана.Только вместо двух символом с минимальными частотами надо брать символов с минимальными частотами(по алгоритму частота символа также может равняться 0)