Алгоритм Хаффмана для n ичной системы счисления
Алгоритм
Для построения
-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором букв заменяются на одну, приводит к уменьшению числа букв на ; так как для построения -ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из букв (сопоставляемых сигналам кода), то необходимо, чтобы число букв первоначального алфавита было представимо в виде , . Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение -ичного кода Хаффмана проводbтся уже точно так же, как и случае двоичного кода.Пример
Для примера возьмём слово "Кириллица".Возьмем
(троичная система счисления).Алфавит будет к, и, р, л, ц, а , а набор весов . Будем действовать согласно алгоритму выше,у нас число букв первоначального алфавита равно 6.Если подставить значения и в формулу для оптимального кодирования ,то получится что не является целым.Но если увеличить число на 1(добавлением фиктивной буквы "я" с весом 0),то можно подобрать целое равное 2. Таким образом можно записать:Узел | к | и | р | л | ц | а | я |
---|---|---|---|---|---|---|---|
Вес | 1 | 3 | 1 | 2 | 1 | 1 | 0 |
По алгоритму возьмем два символа с наименьшей частотой — это м и п. Сформируем из них новый узел мп весом 2 и добавим его к списку узлов:
Узел | и | мп | с |
---|---|---|---|
Вес | 4 | 2 | 3 |
Затем объединим в один узел узлы мп и c:
Узел | и | мпс |
---|---|---|
Вес | 4 | 5 |
И, наконец, объединяем два узла и и мпс. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:
Символ | и | м | п | с |
---|---|---|---|---|
Код | 0 | 100 | 101 | 11 |
Таким образом, закодированное слово "миссисипи" будет выглядеть как "1000111101101010". Длина закодированного слова — 16 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из четырёх по 2 бита, длина закодированного слова составила бы 18 бит.
Корректность алгоритма Хаффмана для -ичной системы счисления
Доказательство аналогично тому,что представлено в теме Алгоритм Хаффмана.Только вместо двух символом с минимальными частотами надо брать символов с минимальными частотами(по алгоритму вес символа также может равняться 0)