Алгоритм Хаффмана для n ичной системы счисления

Материал из Викиконспекты
Перейти к: навигация, поиск

Алгоритм

Для построения [math]n[/math]-ичного кода Хаффмана надо использовать операцию сжатия алфавита, при которой каждый раз сливаются не две, а [math]n[/math] букв исходного алфавита, имеющих наименьшие вероятности.Сжатие алфавита, при котором [math]n[/math] букв заменяются на одну, приводит к уменьшению числа букв на [math]n-1[/math]; так как для построения [math]n[/math]-ичного кода, очевидно, требуется, чтобы последовательность сжатий в конце концов привела нас к алфавиту из [math]n[/math] букв (сопоставляемых [math]n[/math] сигналам кода), то необходимо, чтобы число [math]m[/math] букв первоначального алфавита было представимо в виде [math]m = n + k(n - 1)[/math] ,[math]k \in \mathbb{Z}[/math]. Этого, однако, всегда можно добиться, добавив, если нужно, к первоначальному алфавиту еще несколько фиктивных букв, вероятности которых считаются равными нулю. После этого построение [math]n[/math]-ичного кода Хаффмана проводbтся уже точно так же, как и случае двоичного кода.

Пример

Для примера возьмём слово "Кириллица".Возьмем [math]n=3[/math] (троичная система счисления).Алфавит будет [math]A= \{[/math] к, и, р, л, ц, а [math]\} [/math], а набор весов [math]W=\{1, 3, 1, 2, 1, 1\}[/math]. Будем действовать согласно алгоритму выше,у нас число букв первоначального алфавита [math]m[/math] равно 6.Если подставить значения [math]n[/math] и [math]m[/math] в формулу для оптимального кодирования [math]m = n + k(n - 1)[/math] ,то получится что [math]k[/math] не является целым.Но если увеличить число [math]m[/math] на 1(добавлением фиктивной буквы "я" с весом 0),то можно подобрать целое [math]k[/math] равное 2. Таким образом можно записать:

Узел к и р л ц а я
Вес 1 3 1 2 1 1 0

По алгоритму возьмем два символа с наименьшей частотой — это м и п. Сформируем из них новый узел мп весом 2 и добавим его к списку узлов:

Узел и мп с
Вес 4 2 3

Затем объединим в один узел узлы мп и c:

Узел и мпс
Вес 4 5

И, наконец, объединяем два узла и и мпс. Итак, мы получили дерево Хаффмана и соответствующую ему таблицу кодов:

Символ и м п с
Код 0 100 101 11

Таким образом, закодированное слово "миссисипи" будет выглядеть как "1000111101101010". Длина закодированного слова — 16 бит. Стоит заметить, что если бы мы использовали для кодирования каждого символа из четырёх по 2 бита, длина закодированного слова составила бы 18 бит.


Корректность алгоритма Хаффмана для [math]n[/math]-ичной системы счисления

Доказательство аналогично тому,что представлено в теме Алгоритм Хаффмана.Только вместо двух символом с минимальными частотами надо брать [math]n[/math] символов с минимальными частотами(по алгоритму вес символа также может равняться 0)