Декомпозиция Эдмондса-Галлаи
Определение: |
- количество компонент связности нечетного размера в . |
Теорема (Татта-Бержа): |
дан граф , размер максимального паросочетания в нем равен:
|
Определение: |
множество U, на котором достигается минимум в формуле Татта-Баржа назовем множеством свидетелей. |
Утверждение: |
выполняется следующее:
|
Утверждение: |
если U - не пустое множество свидетелей Татта-Бержа для графа G, тогда в G есть вершины, которые входят в любое максимальное паросочетание. |
Определение: |
граф G = (V, E) называется фактор-критическим, если в нем нем полного паросочетания, но для каждой вершины v из V граф G-v имеет полное. |
Теорема: |
граф G факторо-критический тогда и только тогда, когда для каждой вершины v из V существует максимальное паросочетание в G, которое не покрывает вершину v. |
Утверждение: |
пусть C - цикл нечетной длины в G. Если граф G/С, полученный сжатием C в одну вершину, фактор-критический, то и G - фактор-критический. |
Декомпозиция Эдмондса-Галлаи
Определение: |
необходимые определения:
|
Лемма ((Галлаи, о стабильности)): |
пусть Тогда:
|
Доказательство: |
много-много и с картинками. :( |
Теорема: |
пусть дан граф G = (V, E).
|
Доказательство: |
1) Последовательно удаляя вершины множества , по лемме о стабильности мы получим:Это означает, что не существует рёбер, соединяющих вершины из и . Каждое максимальное паросочетание графа покрывает все вершины множества , поэтому содержит совершенное паросочетание графа . Тем самым, мы доказали пункт 1).2) Из формулы следует, что - компоненты связности графа . Для любой вершины существует максимальное паросочетание графа , не содержащее . Так как - компонента связности графа , паросочетание содержит максимальное паросочетание графа (разумеется, не покрывающее вершину ). Следовательно, и по теореме 2.12 мы получаем, что граф - фактор-критический.3) Пусть M - максимальное паросочетание графа G, а M' получено из M удалением всех рёбер, инцидентных вершинам множества A. Тогда |
Утверждение (следствие из теоремы): |
граф G фактор-критический тогда и только тогда, когда U не пусто и U - единственное множество свидетелей Татта-Бержа для G |