Алгоритм D*
Алгоритм D* — алгоритм поиска кратчайшего пути во взвешенном ориентированном графе, где структура графа неизвестна заранее или постоянно подвергается изменению. Разработан Свеном Кёнигом и Максимом Лихачевым в 2002 году.
Содержание
Алгоритм LPA*
Постановка задачи
Дан взвешенный ориентированный граф . Даны вершины и . Требуется после каждого изменения графа уметь вычислять функцию для каждой известной вершины
Описание
Функция алгоритме A*, за исключением того, что в данном алгоритме наc интересуют только -значения известных вершин на данной итерации.
будет возвращать последнее известное (и самое минимальное) значение расстояния от вершины до . Её значение будет почти аналогичным значению вБудем поддерживать для каждой вершины два вида смежных с ней вершин:
- Обозначим множество как множество вершин, исходящих из вершины .
- Обозначим множество как множество вершин, входящих в вершину .
Ясно, что обязано соблюдаться условие:
и .Функция
будет возвращать стоимость перехода из вершины в вершину . При этом .
Определение: |
Будем называть rhs-значением (right-hand side value) такую функцию Так как rhs-значение использует минимальное значение из минимальных расстояний от до вершин, входящих в данную вершину , это будет нам давать информацию об оценочном расстоянии от до . | , которая будет возвращать потенциальное минимальное расстояние от до по следующим правилам:
Определение: |
Вершина | называется насыщенной (locally consistent), если
Определение: |
Вершина | называется переполненной (locally overconsistent), если
Определение: |
Вершина | называется ненасыщенной (locally underconsistent), если
Очевидно, что если все вершины насыщены, то мы можем найти расстояние от стартовой вершины до любой. Такой граф будем называть устойчивым (насыщенным).
Эвристическая функция теперь должна быть неотрицательная и выполнять неравенство треугольника, т.е. и для всех и
Определение: |
Будем называть ключом вершины такую функцию
| , которая возвращает вектор из 2-ух значений , .
Если в конце поиска пути
, то мы не смогли найти путь от до на текущей итерации. Но после следующего изменения графа путь вполне может найтись.Псевдокод
Основная функция, описывающая алгоритм
Main(): { Initialize(); while (true) { ComputeShortestPath(); //В данный момент мы знаем кратчайший путь изв . Ждем каких-либо изменений графа. for всех ориентированных ребер с измененными весами: { Обновляем результат функции ; UpdateVertex( ); } } }
Теперь опишем составные элементы подробнее Функция инициализации исходного графа устанавливает для всех вершин кроме стартовой (
) значения и равными бесконечности. Для стартовой . Очевидно, что минимальное расстояние от стартовой вершины до самой себя должно быть равным 0, но . Это сделано для того, чтобы стартовая вершина была ненасыщенной и имела право попасть в приоритетную очередь.Initialize(): { //Заведем приоритетную очередь, в которую будем помещать вершины. Сортировка будет производиться по функции . for U.Insert( ; CalcKey( )); }
//Функция. Возвращаемые значения сортируются в лексографическом порядке, т.е. сначала , потом CalcKey(s): { return [ ; ]; }
UpdateVertex(): { if ( ) if ( ) U.Remove(u); if ( ) U.Insert( ; CalcKey( )); }
// Функция неоднократно перерасчитывает значениеу ненасыщенных вершин в неубывающем порядке их ключей. Такой перерасчет значения будем называть расширением вершины. ComputeShortestPath(): { while (U.TopKey() < CalcKey( ) OR rhs( ) g( )) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s); }
Таким образом мы описали алгоритм LPA*. Он неоднократно определяет путь между вершинами
и , используя при этом данные из предыдущих итераций. Очевидно, что в худшем случае (а именно когда все ребра вокруг текущей вершины изменили свой вес) алгоритм будет работать как последовательные вызовы алгоритма А* за . Улучшим эту оценку с помощью алгоритма D* lite.Примечание: на практике же такой подход тоже имеет место на плотных графах (или матрицах), так как в среднем дает оценку
.Алгоритм D* (Первая версия)
Пока что был описан только алгоритм LPA*. Он способен неоднократно определять кратчайшее расстояние между начальной и конечной вершинами при любом изменении данного графа. Его первоначальный поиск полностью совпадает с алгоритмом A*, но последующие итерации способны использовать информацию из предыдущих поисков.
Постановка задачи
Теперь на основе LPA* опишем алгоритм D*, который способен определять расстояние между текущей вершиной
, в которой, допустим, находится курсор/робот, и конечной вершиной при каждом изменении графа в то время, как наш робот движется вдоль найденного пути.Описание
Опишем первую версию алгоритма D*. Очевидно, что большинство вершин в процессе движения робота остаются неизменными, поэтому мы можем применить алгоритм LPA*.
Примечание: Большинство функций переходят в данный алгоритм без изменений, поэтому опишем только измененные части.
Для начала мы поменяем направление поиска в графе.
Теперь функция g(s) хранит минимальное известное расстояние от
до . Свойства остаются прежними.Эвристическая функция теперь должна быть неотрицательная и обратно-устойчивая, т.е. и для всех и . Очевидно, что при движении робота изменяется, поэтому данные свойства должны выполняться для всех .
Дополнительное условие выхода также меняется, т.е. при
путь не найден на данной итерации. Иначе путь найден и робот может проследовать по нему.Примечание: Так же следует отметить, что функция Initialize не обязана инициализировать абсолютно все вершины перед стартом алгоритма. Это важно, так как в на практике число вершин может быть огромным и только немногие будут пройдены робот в процессе движения. Так же это дает возможность добавления/удаления ребер без потери устойчивости всех подграфов данного графа.
Псевдокод
При такой постановке задачи псевдокод не сильно меняется. Но функция Main все-таки претерпевает значительные изменения.
CalcKey(s): return [; ];
Initialize(): U =; for U.Insert( ; CalcKey( ));
UpdateVertex(u): if () rhs(u) = if ( ) U.Remove(u); if ( ) U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) u = U.Pop(); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main(): Initialize(); ComputeShortestPath(); while () // if ( ) тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); for U.Update( ; CalcKey( )); ComputeShortestPath();
Теорема (Свен Кёниг, Об устойчивой насыщенности вершин): |
Функция ComputeShortestPath в данной версии алгоритма расширяет вершину максимум 2 раза, а именно 1 раз, если вершина ненасыщена, и максимум 1 раз, если она переполнена. |
Алгоритм D* (Вторая версия)
Описание
В первой версии алгоритма была серьезная проблема в том, что для каждой вершины в приоритетной очереди нужно было обновлять ключ суммарно за
. Это дорогая операция, так как очередь может содержать огромное число вершин. Воспользуемся оригинальным методом поиска и изменим основной цикл, чтобы избежать постоянного перестроения очереди .Теперь эвристическая функция должна поддерживать неравенство треугольника для всех вершин
, т.е. . Так же должно выполняться свойство , где - стоимость перехода по кратчайшему пути из в , при этом и не должны быть обязательно смежными. Такие свойства не противоречат свойствами из первой версии, а лишь усиливают их.Псевдокод
CalcKey(s): return [; ];
Initialize(): U =; for U.Insert( ; CalcKey( ));
UpdateVertex(u): if () rhs(u) = if ( ) U.Remove(u); if ( ) U.Insert(u; CalcKey(u));
ComputeShortestPath(): while (U.TopKey() < CalcKey() OR ) ; u = U.Pop(); if ( < CalcKey( )) U.Insert( ;CalcKey( )); if (g(u) > rhs(u)) g(u) = rhs(u); for UpdateVertex(s); else g(u) = ; for UpdateVertex(s);
Main():Initialize(); ComputeShortestPath(); while ( ) // if ( ) тогда путь на данной итерации не найден. = такая вершина s', что Передвинулись вдоль найденного пути и изменили вершину ; Сканируем роботом какие-либо изменения в графе или убеждаемся, что граф остается прежним. if (граф изменился) ; ; for всех ориентированных ребер с измененными весами: Обновляем результат функции ; UpdateVertex(u); ComputeShortestPath();
Пример работы
Итерации в функции ComputeShortestPath на исходном графе. | Итерации в функции ComputeShortestPath после изменения графа. (Второй вызов функции) |