Теория Рамсея
Эта статья находится в разработке!
Содержание
Числа Рамсея
Основным объектов изучения будут полные графы, ребра которых покрашены в несколько цветов. В дальнейшем, для простоты, полный граф на
вершинах будем называть кликой.Определение: |
Пусть | . Число Рамсея — это наименьшее из таких чисел , что при любой раскраске ребер полного графа на вершинах в два цвета найдется клика на вершинах с ребром цвета 1 или клика на вершинах с ребром цвета 2.
Существование. Оценки сверху
Теорема (P. Erdos, G. Szekeres): |
Пусть -натуральные числа. Тогда . Если оба числа и -четные, то неравенство строгое. |
Доказательство: |
1) Рассмотрим клику на неравенство. 2) Рассмотрим клику на вершинах с рёбрами цветов 1 и 2 и ее произвольную вершину . Тогда либо от вершины отходит хотя бы рёбер цвета 2, либо от вершины отходит хотя бы рёбер цвета 1. Случаи аналогичны, рассмотрим первый случай и клику на вершинах, соединенных с рёбрами цвета 2. На этих вершинах есть либо клика на вершинах с ребрами цвета 1, либо клика на вершинах с рёбрами цвета 2. Во втором случае добавим вершину и получим клику на вершинах с рёбрами цвета 2. Теперь из определения следует вершинах с рёбрами цветов 1 и 2 и его произвольную вершину . Если вершине инцидентны хотя бы рёбер цвета 2 или хотя бы рёбер цвета 1, то мы найдём в графе клику на вершинах с рёбрами цвета 1 или клику на вершинах с рёбрами цвета 2. Остаётся лишь случай, когда вершине инцидентны ровно рёбер цвета 2, то же самое для всех остальных вершин. Это означает, что в графе из рёбер цвета 2 всего вершин и степень каждой вершины равна . Однако, тогда в графе нечётное количество вершин нечётной степени. Противоречие показывает нам, что в случае, когда и — чётные, выполняется неравенство . |
Утверждение (Следствие 1): |
Для натуральных чисел выполняется равенство |
Очевидно, при или , как и соответствующие числа Рамсея. Индукцией по и при получаем |
С помощью неравенства из теоремы можно получить несколько точных значений чисел Рамсея. Отметим что . Так как числа и четны, можно вывести неравенства . И, наконец, , а также