Алгоритм Левита
Алгоритм Левита (Levit algorithm) находит расстояние от заданной вершины
до всех остальных. Позволяет работать с ребрами отрицательного веса при отсутствии отрицательных циклов.Содержание
Алгоритм
Пусть
— текущая длина кратчайшего пути до вершины . Изначально, все элементы , кроме -го равны бесконечности; .Разделим вершины на три множества:
- — вершины, расстояние до которых уже вычислено (возможно, не окончательно)
- — вершины, расстояние до которых вычисляется. Это множество в свою очередь делится на два упорядоченных подмножества:
- — основная очередь
- — срочная очередь
- — вершины, расстояние до которых еще не вычислено
Изначально все вершины, кроме
помещаются в множество . Вершина помещается в множество (в любую из очередей).
Шаг алгоритма: выбирается вершина из . Если очередь не пуста, то вершина берется из нее, иначе из . Далее, для каждого ребра :
- если , то переводится в конец очереди . При этом (производится релаксация ребра )
- если , то происходит релаксация ребра
- если и , то происходит релаксация ребра и помещается в
В конце шага помещаем вершину
в множество .
Алгоритм заканчивает работу, когда множество становится пустым.
Псевдокод
for uV : .add(s) for u s V : .add(u) while and : if : u .pop() else : u .pop() for uv E : if v : .push(v) .remove(v) relax(uv, d) if v : relax(uv, d) if v and : .push(v) .remove(v) relax(uv, d) .add(u)
Доказательство
Лемма: |
Алгоритм отработает за конечное время |
Доказательство: |
Не теряя общности, будем считать, что граф связен. Тогда в конце работы алгоритма все вершины должны оказаться в | Заметим, что на каждом шаге мы гарантированно либо уменьшаем расстояние до какой-то вершины, либо перемещаем текущую вершину в . Так как в графе нет отрицательных циклов, то уменьшить расстояние можно только конечное число раз. Количество вершин тоже конечно. Следовательно, будет произведено конечное число шагов.
Лемма: |
В конце работы алгоритма не найдется такое ребро , что его релаксация будет успешной |
Доказательство: |
Предположим обратное. Тогда рассмотрим 2 случая:
|
Из двух предыдущих лемм напрямую следует корректность алгоритма.
Сложность
В худшем случае алгоритм Левита работает за экспоненциальное время. Однако, на реальных графах алгоритм Левита работает быстрее, чем алгоритм Форда Беллмана и не многим хуже алгоритма Дейкстры.
Источники
- Алгоритм Левита - Википедия, свободная энциклопедия
- Алгоритм Левита - MAXimal::algo
- И. В. Романовский, Дискретный анализ, ISBN 5-7940-0138-0; 2008 г., стр. 228-234.