Минимальная охватывающая окружность множества точек
Конспект не готов. |
Описание
Минимальная охватывающая окружность множества точек (smallest enclosing disc) - это задача, в которой необходимо по заданному набору точек найти окружность минимального радиуса, которая содержит все точки множества.
Алгоритм
Сперва приведем алгоритм, корректность которого позднее будет доказана.
Рассмотрим метод
, который будет принимать на вход множество точек, а возвращать будет искомую охватывающую окружность. Идея метода в том, что он генерирует случайную перестановку из точек, которые поступили на вход и в получившимся порядке по одной добавляет их в текущую охватывающую окружность. Как будет доказано позднее, если на каком-то шаге алгоритма текущая точка оказалась вне текущей минимальной окружности, то утверждается, что она лежит на границе новой окружности, которая будет содержать в себе ее и все предыдущие точки. Опишем приведенный выше алгоритм псевдоком:MinDisc(S)
Let P - random permutation of S
Let D2 - be the smallest enclosing disc for {p1, p2}.
for i = 3 to n {
if pi
Di−1 then Di = Di−1 // point is inside. nothing to do here
else Di = MinDiscWithPoint ({p1,...,pi−1}, pi) // point is lying on the boundary of minimal circle
}
return Dn
Как вы заметили, мы использовали выше метод
- это метод, который по множеству точек и еще одной точке возвращают искомую окружность. При этом выделенная точка (которая передается в качестве второго аргумента) обязательно лежит на окружности. Эта функция очень похожа на предыдущую, поэтому приведу лишь ее псевдокод:MinDiscWithPoint(S, q)
Let P - random permutation of S
Let D1 - be the smallest enclosing disc for {p1, q}.
for i = 2 to n {
if pi
Di−1 then Di = Di−1
else Di = MinDiscWith2Points ({p1,...,pi−1}, pi, q)
}
return Dn
Как и в предыдущем случае мы использовали новый метод.
аналогичен , но в нем уже передается две точки, которые будут лежать на построенном окружности. В этой функции шафлить инпут не требуется. Опишем его псевдоком:MinDiscWith2Points(P, q1, q2)
Let D0 - be the smallest enclosing disc for {q1, q2}.
for i = 1 to n {
if pi
Di−1 then Di = Di−1
else Di = сircumcircle (прим. описанная окружность) of a triangle {pi, q1, q2}
}
return Dn
Как мы видим больше подобных шагов делать не нужно, так как если известно, что три точки лежат на некоторой окружности, то они однозначно ее задают.
Корректность алгоритма
Память и время работы
Источники
Mark de Berg, Otfried Cheong, Marc van Kreveld, Mark Overmars-Computational Geometry Algorithms and Applications, p. 86