Счётчик Кнута
Счетчик Кнута (англ. Knuth's Counter) - структура данных, представленная избыточной двоичной системой счисления, где добавление единицы к любому разряду выполняется за
.Избыточная двоичная система счисления - двоичная система счисления, где кроме 0 и 1 допустима 2 в записи числа.
Алгоритм
Примечание: этот алгоритм работает на за истинное
. Например, чтобы прибавить 1 к 0111...111, нужно действий.Имеется число, записанное в избыточной двоичной системе счисления, необходимо добавить 1 к какому-либо разряду. Будем поддерживать следующий инвариант: в следующем за любой двойкой разряде всегда стоит 0.
Разберем случаи добавления единицы:
- a) Если 1 нужно добавить к 2, то в текущем разряде установить 1, в следующем 1.
- б) Если 1 нужно добавить к 1 и в следующем разряде 0, то в текущем разряде установить 2.
- в) Если 1 нужно добавить к 1 и в следующем разряде 1, то в текущем разряде установить 0, повторить алгоритм для следующего разряда.
- г) Если 1 нужно добавить к 1 и в следующем разряде 2, то в следующем за двойкой разряде установить 1, в разряде с двойкой установить 1, в текущем установить 0.
- д) Если 1 нужно добавить к 0 и в предыдущем разряде 2, в следующем 0, то в предыдущем разряде установить 0, в текущем 2.
- е) Если 1 нужно добавить к 0 и в предыдущем разряде 2, в следующем 1, то в предыдущем разряде установить 0, повторить алгоритм для следующего разряда.
- ж) Если 1 нужно добавить к 0 и в предыдущем разряде 2, в следующем 2, то в предыдущем разряде установить 0, повторить алгоритм для следующего разряда.
- з) Если 1 нужно добавить к 0 и в предыдущем разряде не 2, установить в текущем разряде 1.
Доказательство
Покажем, что инвариант не нарушится.
Инвариант можно нарушить в 2 случаях: когда к единице прибавляют 1, и в следующем разряде стоит не 0, и когда к нулю прибавляется 1, а в предыдущем разряде стоит 2.
В первом случае, если в следующем разряде 1, алгоритм будет устанавливать в текущий разряд 0 и запускаться от следующего разряда. Если в следующем разряде 2, то, согласно инварианту, следующий за 2 разряд 0, и, если установить в следующий за двойкой и в разряд с двойкой единицы, то инвариант не нарушится.
Во втором случае, если в следующем разряде 0, то предыдущий установится в 0, текущий в 2 и так как в следующем 0 инвариант не нарушится. Если в следующем разряде не 0, то предыдущий установится в 0 и алгоритм запустится от следующего.
Пример
Рассмотрим пример для каждого варианта, добавление 1 происходит в 3 разряд.
а)
б)
в)
повторение алгоритма для 4 разряда, по варианту бг)
д)
е)
повторение алгоритма для 4 разряда, по варианту бж)
повторение алгоритма для 4 разряда, по варианту аз)
Амортизационная оценка алгоритма
Воспользуемся методом предоплаты. Будем считать, что каждый раз когда мы начинаем выполнять алгоритм мы берем 2 монетки. Одна будет тратится на изменение текущего разряда и одна запасаться. Таким образом, если в разряде стоит 1, то для него запасена 1 монетка, если стоит 2, то запасено 2 монетки. Проверим все варианты.
а) Так как в текущем разряде было 2, то уже запасено 2 монеты, а так же согласно инварианту после 2 стоит 0, тогда возьмем одну из запасенных у двойки монет и потратим их на присвоение следующему разряду 1, вторую запасенную передадим этой единице. Одну монету потратим на установку в текущий разряд 1, вторую запасем для это единицы.
б) Так как в текущем разряде было 1, то прибавим наши монеты к уже запасенной от единицы. Одну монету потратим, что бы установить 2, останется 2 монеты.
в) Так как в текущем разряде было 1, то прибавив наши монеты к запасенной получим 3. Одну монету потратим, что бы установить 0, оставшиеся 2 потратим на повторение алгоритма для следующего разряда.
г) Так как в текущем разряде было 1, в следующем 2, то уже запасено 3 монеты и еще 2 наши. 3 монеты потратим, что бы следующему за 2 разряду установить 1, разряду с 2 установить 1, текущему установить 0. Останется 2 монеты, которые распределятся между двумя единицами.
д) Так как в текущем разряде было 0, в предыдущем разряде 2, в следующем 0, то уже запасено 2 монеты. Одну монету потратим на изменение предыдущего разряда, одну на изменение текущего разряда, наши две монеты запасем для двойки в текущем разряде.
е) Так как в текущем разряде было 0, в предыдущем разряде 2, в следующем 1, то уже запасено 3 монеты. Одну монету потратим на изменение предыдущего разряда, одну сохраним с единицей, наши две монеты потратим на повторение алгоритма на следующем разряде. Останется одна лишняя монета.
ж) Так как в текущем разряде было 0, в предыдущем разряде 2, в следующем 2, то уже запасено 4 монеты. Одну монету потратим на изменение предыдущего разряда, две сохраним с двойкой, наши две монеты потратим на повторение алгоритма на следующем разряде. Останется одна лишняя монета.
з) Одну монету потратим на изменение разряда, оставшуюся запасем с единицей.
Получается 2 монет достаточно для прибавления 1 к любому разряду, тогда наш алгоритм работает в среднем за