Алгоритм Тарьяна поиска LCA за О(1) в оффлайне
Версия от 02:22, 6 июня 2014; Алесандр (обсуждение | вклад)
Алгоритм Тарьяна позволяет находить наименьшего общего предка двух вершин в дереве, если все запросы известны заранее (offline). Каждый запрос к дереву - это 2 вершины
, для которых нужно найти такую вершину , что -предок вершин и , и имеет максимальную глубину из всех таких вершин. Алгоритм позволяет найти ответы для дерева из n вершин и m запросов за время , т.е при достаточно большом m, за на запрос.Алгоритм
Подвесим наше дерево за любую вершину, и запустим обход в глубину из её. Ответ на каждый запрос мы найдём в течении этого
. Ответ для вершин , находится, когда мы уже посетили вершины , а в обработали всех сыновей и собираемся выйти из неё.Зафиксируем момент, мы собираемся выйти из вершины
(обработали всех сыновей) и хотим узнать ответ для пары , . Тогда заметим что ответ - это либо вершина , либо какой-то её предок. Значит нам нужно найти предок вершины , который является предком вершины с наибольшей глубиной. Заметим, что при фиксированном каждый из предков вершины порождает некоторый класс вершин , для которых он является ответом (в этом классе содержатся все вершины которые находятся "слева" от этого предка).На рисунке разные цвета-разные классы,а белые вершины ещё не просмотренные в
.Классы этих вершин - не пересекаются, а значит мы их можем эффективно обрабатывать с помощью
. Будем поддерживать массив - представитель множества в котором содержится вершина . Для каждого класса мы образуем множество, и представителя этого множества. Когда мы приходим в новую вершину мы должны добавить её в новый класс ( ),а когда просмотрим всё поддерево какого-то ребёнка, мы должны объединить это поддерево с нашим классом (операция ), и не забыть установить представителя как вершину (в зависимости от реализации это может быть какая-то другая вершина).Зафиксируем вершины
, и выделим путь от корня до этой вершины. Теперь все рёбра "левее" этого пути уже добавлены в , все рёбра правее — ещё не обработаны, а все рёбра на пути — обработаны, но в ещё не добавлены, так как в мы добавляем при выходе. Тогда можно заметить, что любая вершина из обработанных в цепляются к какой-то вершине текущего пути, в . К самой первой вершине этого пути, до которой мы доберёмся, если будем просто подниматься. Очевидно, это и есть .После того как мы обработали всех детей вершины
,мы можем ответить на все запросы вида ( , ) где -уже посещённая вершина. Нетрудно заметить что ответ для .Так же можно понять что для каждого запроса это условие(что одна вершина уже посещена, а другую мы обрабатываем) выполнится только один раз.Реализация
vector <bool> visited; vector <int> query[n]; int dsu_get (int v) { return v == dsu[v] ? v : dsu[v] = dsu_get (dsu[v]); } unite (int a, int b,int new_ancestor) { a = dsu_get (a); b = dsu_get (b); dsu[a] = b; ancestor[b] = new_ancestor; } dfs(int v) { visited[v] = true; for (u таких, что (v, u) — ребро в G) if (not visited[u]) dfs(u); union(v,u,v); for (i = 0; i < query[v].size; i++) if (visited[query[v][i]]) cout << "LCA " << v << " " << u << " = " << ancestor[dsu_get(q[v][i])]; } int main() { dfs(0); // можно запускать от любой вершины }
Оценка сложности
Она состоит из нескольких оценок. Во-первых
работает О (n). Во-вторых, операции по объединению множеств, которые в сумме для всех разумных затрачивают операций. В-третьих, для каждого запроса проверка условия и определение результата, опять же, для всех разумных выполняется за . Итоговая асимптотика получается , но при достаточно больших ответ за на один запрос.