Основные определения, связанные со строками
Версия от 21:55, 9 июня 2014; Pasha26007 (обсуждение | вклад)
Базовые определения
Определение: |
Символ (англ. Symbol) — объект, имеющий собственное содержание и уникальную читаемую форму. |
Определение: |
Алфавит (англ. Alphabet) | — непустое множество символов.
Примеры:
- — бинарный алфавит.
- — алфавит, лежащий в основе азбуки Морзе.
- — английский алфавит.
- — алфавит цифр.
- Нотные знаки
Определение: |
Нейтральный элемент — пустая строка | : . Для любой строки верно: .
Определение: |
Замыкание Клини (англ. Kleene closure) — унарная операция над множеством строк либо символов. Замыкание Клини множества | есть .
Если , то .
Определение: |
Цепочка (англ. Chain) — элемент конечной длины из | .
Определение: |
Конкатенация (англ. Concatenation) — бинарная, ассоциативная, некоммутативная операция, определённая на словах данного алфавита. Конкатецния строк | и является строка .
Определение: |
Моноид (англ. Monoid) — множество, на котором задана бинарная ассоциативная операция, обычно именуемая умножением, и в котором существует нейтральный элемент. | с операцией конкатенации и нейтральным элементом образуют моноид
Отношения между строками
Определение: |
Префикс (англ. Prefix) строки | — строка : .
Пусть , тогда — префикс .
Определение: |
Суффикс (англ. Suffix) строки | — строка : .
Пусть , тогда — суффикс .
Определение: |
Бордер (англ. Circumfix) строки | — строка : .
Пусть , тогда — бордер <tex\beta</tex>.
Определение: |
Период (англ. Period) строки | — число : .
Пусть , тогда — период строки .
Определение: |
Строка | c периодом , называется сильнопериодической, если .
Строка является сильнопериодической с периодом .
Определение: |
Подстрока (англ. Substring) — некоторая непустая связная часть строки. |
Пусть , тогда — подстрока строки .
Определение: |
Строка
| , если:
Строка , т.к. является префиксом .
Строка , т.к. .
Смотри также
Литература
- Гасфилд Д. Строки, деревья и последовательности в алгоритмах: Информатика и вычислительная биология. — 2-е изд.
- Kelley, Dean (1995). Automata and Formal Languages: An Introduction. London: Prentice-Hall International. ISBN 0-13-497777-7.
- Gusfield, Dan (1999) [1997]. Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. USA: Cambridge University Press. ISBN 0-521-58519-8.