Вещественный двоичный поиск

Материал из Викиконспекты
Перейти к: навигация, поиск

Вещественный двоичный поиск — алгоритм поиска аргумента для заданного значения монотонной вещественной функции.

Формулировка задачи

Пусть нам задана монотонная функция. Необходимо найти значение аргумента [math]x[/math] этой функции, в которой она принимает определенное значение [math]C[/math] = valOfFunc.

Function.png

Решение задачи

Применим идею двоичного поиска. Выберем такие границы, где значение функции точно больше и точно меньше заданного значения. Выберем значение в середине этого отрезка. Если оно меньше, чем заданное, то сместим левую границу в середину отрезка. В противном случае сместим правую границу. Далее повторим процесс сужения границ. Встает вопрос, когда остановиться. Есть несколько способов сделать это.

Способы закончить поиск

Способы Плюсы Минусы Оценка на число итераций
Окончание, когда рассматриваемый отрезок станет меньше заданной погрешности [math] \varepsilon [/math]. Заданная точность найденного значения. Алгоритм может зациклиться. В компьютере мы работаем с конечным числом вещественных чисел, у которых есть точность. При больших значениях функции длина отрезка может никогда не уменьшиться до заданного значения. В данном случае нам нужно рассмотреть [math] \genfrac{}{}{}{}{R - L}{\varepsilon} [/math] чисел [math] \Rightarrow [/math] примерное число итераций [math] \log(\genfrac{}{}{}{}{R - L}{\varepsilon}) [/math].
Окончание, когда значение функции на концах отрезках различается менее, чем на заданную погрешность [math] \varepsilon [/math]. Значение функции от найденного значения имеет заданную точность. а) Возможна большая погрешность, если функция будет очень медленно возрастать.
б) Может зациклиться по той же причине, что и в первом способе.
Аналогичная с первым случаем логика, примерное число итераций [math] \log(\genfrac{}{}{}{}{f(R) - f(L)}{\varepsilon}) [/math].
«Абсолютно точный поиск»
Окончание, когда границы отрезка — два соседних по представлению значения в типе данных. Утверждается, что два числа — соседние, если середина их отрезка совпадает или с левой, или с правой границей.
Максимально возможная точность найденного значения. Возможно плохое поведение, если искомый аргумент равен нулю. При работе с числами с плавающей точкой количество итераций зависит от плотности чисел на данном отрезке. При работе с числами фиксированной точности (= [math]\varepsilon[/math]) количество итераций аналогично первому и второму случаю равно [math] \log(\genfrac{}{}{}{}{R - L}{\varepsilon}) [/math].
«Итеративный способ»
Выполнение конечного числа итераций.
У способа фиксированная погрешность. Довольно плохая точность, если границы отрезка находятся на большом расстоянии. Выполняется заданное количество итераций.

Выбор границы отрезка для поиска

Для начала найдем правую границу. Выберем произвольную положительную точку (например [math]1[/math]). Будем удваивать ее до тех пор, пока значение функции в этой точке меньше заданного. Для того, чтобы найти левую границу выберем произвольную отрицательную точку (например [math]-1[/math]). Будем удваивать ее до тех пор, пока значение в ней будет больше заданного значения.

Псевдокод

double findLeftBoard(valueOfFunc : double): 
    x = -1
    while f(x) > valueOfFunc 
        x = x * 2
    return x 

double findRightBoard(valueOfFunc : double):
    x = 1
    while f(x) < valueOfFunc
        x = x * 2
    return x

double binSearch(valueOfFunc : double):
    left = findLeftBoard(valueOfFunc)
    right = findRightBoard(valueOfFunc)
    while right - left < eps                            //Здесь можно использовать другое условие выхода 
        mid = (left + right) / 2
        if f(mid) < valueOfFunc
            left = mid
        else
            right = mid
    return (left + right) / 2

Замечания

  • Необходимо отметить, то функция должна быть строго монотонна, если мы ищем конкретный корень и он единственный. Нестрого монотонна, если нам необходимо найти самый левый (правый) аргумент. Если же функция не монотонна, то данный алгоритм не найдет искомый аргумент, либо найдет аргумент, но он не будет единственным.
  • Классической задачей на вещественный двоичный поиск является задача поиска корня [math]n[/math]-ой степени из числа [math]x[/math]: [math]\sqrt[n]{x}[/math]. При [math]x \ge 1[/math] нижней границей для поиска будет [math]1[/math], а верхней — [math]x[/math].

Источники информации