Куча Бродала-Окасаки
Куча Бродала-Окасаки (англ. Brodal's and Okasaki's Priority Queue) — основана на использовании биномиальной кучи без каскадных ссылок, добавлении минимального элемента и на идеи Data-structural bootstrapping. Первое позволяет делать за , второе позволяет получать минимальный элемент за , а третье — позволяющей выполнить за . Удаление минимума работает за в худшем случае. Эти оценки являются асимптотически оптимальными среди всех основанных на сравнении приоритетных очередей.
Содержание
Структура
Используем идею, которую Тарьян и Буксбаум называют Data-structural bootstrapping.
Создадим структуру Bootstrapping Priority Queues, которая будет хранить пару из минимального элемента и приоритетную очередь. Элементами приоритетной очереди будут Bootstrapping Priority Queues упорядоченные по . Это можно записать так:
Куча из одного элемента будет выглядеть так:
Данная структура не будет бесконечной, так как каждый раз в приоритетной очереди будет храниться на один элемент меньше, таким образом образуя иерархическую структуру. Каждое значение храниться в одном из значений
Операции
Merge
Слияние выполняется выбором минимума из двух значений
BPQ merge(x : int, q : BPQ , y:int, r:bpq :pair): if x < y return (x, insert(q, y, r )) else return (y, insert(r, x, q ))
Здесь
это добавление в приоритетную очередь работает за , тогда работает за .Insert
Это создание нового
int, bpq insert( x:int, q:bpq , y:bpq): return merge( x, q , create(y))
Создание и
выполняются за , тогда работает за .getMin
Выполняется просто, так как
int getMin(x:int, q:bpq ): return x
Очевидно, работает за
.extractMin
Минимальный элемент хранится в верхнем
pair (int, bpq) extractMin((x:int, q:bpq):pair): ((y, r), t) = extractMin(q) return (y, merge(r, t))
Здесь
— это функция, извлекающая минимальный элемент типа из приоритетной очереди, она возвращает — минимальный элемент типа и остаток от приоритетной очереди после извлечение минимума — . функция, выполняющая слияние двух приоритетных очередей.Возвращаем
, где — новый минимальный элемент, и приоритетная очередь без элемента .Так как
и выполняются за , тогда выполняется за .