Список заданий по ТФЯ
Версия от 14:59, 18 сентября 2014; 194.85.160.133 (обсуждение)
<wikitex>
Теория формальных языков, 5 семестр
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых четность числа 0 равна четности числа 1
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых нет трех нулей подряд
- Построить конечный автомат для языка слов над бинарным алфавитом, которые представляют собой двоичную запись чисел, кратных 5
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей не кратно 3
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых есть три нуля подряд. Сделайте вывод из последних двух заданий.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 и которые представляют собой двоичную запись чисел кратных 5.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число нулей кратно 3 или которые представляют собой двоичную запись чисел кратных 5. Сделайте вывод из последних двух заданий.
- Построить конечный автомат для языка слов над бинарным алфавитом, в пятый символ с конца - 0. Можно построить недетерминированный автомат.
- Постройте детерминированный автомат для предыдущего задания или докажите, что в нем слишком много состояний, чтобы его рисовать ;).
- Постройте регулярное выражение для языка слов над бинарным алфавитом, в которых нет двух нулей подряд.
- Построить конечный автомат для языка слов над бинарным алфавитом, в которых число 0 кратно 3.
- ХМУ 4.2.2, стр 163
- ХМУ 4.2.3, стр 163
- ХМУ 2.3.1, стр 83
- Докажите, что минимальный ДКА для языка $(0|1)^*0(0|1)^k$ содержит минимум $2^k$ состояний
- ХМУ 4.2.4, стр 163
- ХМУ 4.2.5, стр 164
- ХМУ 4.2.6, стр 164
- ХМУ 4.2.7, стр 164
- ХМУ 4.2.8, стр 164
- ХМУ 4.2.10, стр 165
- ХМУ 4.2.11, стр 165
- Доказать нерегулярность языка слов $0^n1^n$
- Доказать нерегулярность языка, каждое слово которого содержит поровну 0 и 1.
- Доказать нерегулярность языка палиндромов.
- Доказать нерегулярность языка тандемных повторов.
- Доказать нерегулярность языка $0^n1^m$, $n \le m$
- Доказать нерегулярность языка $0^n1^m$, $n \ne m$
- Доказать нерегулярность языка $0^{n^2}$
- Доказать нерегулярность языка $0^p$, $p$ — простое
- Доказать нерегулярность языка двоичных записей простых чисел
- Доказать нерегулярность языка $0^n1^m$, $gcd(n, m) = 1$
- Доказать нерегулярность языка $0^a1^b2^c$, $a \ne b$ и $b \ne c$
- Приведите пример нерегулярного языка, для которого выполнена лемма о разрастании
- Доказать, что если состояния $u$ и $v$ автомата различимы, то $u$ и $v$ различимы строкой длины $O(n)$.
- Придумать алгоритм проверки того, что $L = L^*$.
- ХМУ 4.3.1, стр 171.
- ХМУ 4.3.2, стр 171.
- Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $ X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $ X + Y = Z $. Докажите, что этот язык регулярный.
- То же, что и предыдущее, только $\{x_{n-1} y_{n-1} z_{n-1} \dots x_1 y_1 z_1 x_0 y_0 z_0 \mid \dots \}$.
- Рассмотрим язык $\{x_0 y_0 z_0 x_1 y_1 z_1 \dots x_{n-1} y_{n-1} z_{n-1} \mid x_i, y_i, z_i \in \{0, 1\}\}$, где $X = x_{n-1}x_{n-2}\dots x_0$ и аналогично представляется $Y$ и $Z$, причем $X \times Y = Z$. Докажите, что этот язык не является регулярным.
- Рассмотрим отношение на словах $L$: $x \equiv y$, если для любых $u$, $v$ выполнено $uxv \in L \Leftrightarrow uyv \in L$. Классы эквивалентности этого отношения называются синтаксическим моноидом языка $L$. Докажите, что $L$ регулярный тогда и только тогда, когда синтаксический моноид $L$ конечен.
- Придумайте семейство регулярных языков $L_i$, у которых ДКА для $L_i$ содержит $O(i)$ состояний, а синтаксический моноид $L_i$ имеет неполиномиальный размер.
</wikitex>