Дерево, эквивалентные определения
Определения
Определение: |
Ациклический граф - граф, в котором нет циклов. |
Определение: |
Дерево - это связный ациклический граф. |
Определение: |
Граф, не содержащий циклов, называется лесом. |
Теорема
Теорема: |
Для графа с вершинами и ребрами следующие утверждения эквивалентны:
1) - дерево;2) любые две вершины в соединены единственной простой цепью;3) связный граф и ;4) ациклический граф и ;5) - ациклический граф, и если любую праву несмежных вершин соединить ребром , то в графе будет точно один простой цикл;6) 7) - связный граф, отличный от Kp для , и если любую пару несмежных вершин соединить ребром , то в графе будет точно один простой цикл; - Граф, отличный от K3 K1 и K3 K2, , и если любую пару несмежных вершин соединить ребром , то в графе будет точно один простой цикл. |
Доказательство: |
Для примера докажем эквивалентность первых четырёх утверждений. 1) 2) 2) Поскольку связный граф, то любые две его вершины соединены простой цепью. Пусть и - две различные простые цепи, соединяющие вершины и , и пусть - первая вершина, принадлежащая (при переходе по из в ), такая, что принадлежит и и , но вершина, предшествующая ей в , не принадлежит .Если - следующая за вершина в , принадлежащая также , то сегменты (части) цепей и , находящиеся между вершинами и , образуют простой цикл в графе . Поэтому если - ациклический граф, то между любыми двумя его вершинами существует самое большое одна цепь. 3) Ясно, что граф - связный. Соотношение докажем по индукции. Утверждение очевидно для связных графов с одной и двумя вершинами. Предположим, что оно верно для графов, имеющих меньше вершин. Если же граф имеет вершин, то удаление из него любого ребра делает его несвязным, в силу единственности простых цепей; более того, получаемый граф будет иметь в точности две компоненты. По предположению индукции в каждой компоненте число вершин на единицу больше числа ребер. Таким образом, общее число ребер в графе должно равняться . |
Следствие:
В любом нетривиальном дереве имеется по крайней мере две висячие вершины.
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6