Троичная логика
| Определение: | 
| Троичная или трёхзначная логика (англ. ternary logic) — исторически первая многозначная логика, разработанная Яном Лукасевичем в 1920 г. Является простейшим расширением двузначной логики. | 
В традиционной трёхзначной логике "лжи" и "истине" соответствуют знаки  и . Третьему (серединному) состоянию соответствует знак . Допустимо использование таких наборов знаков, как {0,1,2}, {-1,0,1}, {0,1/2,1} {N,Z,P}, {Л,Н,И} и др.
Классическими примерами состояний такой логики являются знаки , и , состояние постоянного тока (движется в одну сторону, движется в другую сторону, отсутствует) и др.
Содержание
Преимущества перед двоичной логикой
| Определение: | 
| Троичная система счисления — позиционная система счисления с целочисленным основанием, равным 3. Существует в двух вариантах: несимметричная ({0,1,2}, {0,1/2,1} и др.) и симметричная (обычно {−,0,+} или {−1,0,1}). | 
Троичная логика обладает рядом преимуществ перед двоичной. Ниже перечислены основные:
- Троичная СС позволяет вмещать больший диапазон чисел в памяти троичного компьютера, поскольку .
-  Очевидно, что троичная СС использует меньше разрядов для записи чисел, по-сравнению с двоичной СС. Например: 
(для троичной СС используется несимметричный набор {0,1,2}.
Эти два важных преимущества перед двоичной системой счисления говорят о большей экономичности троичной системы счисления.
| Определение: | 
| Экономичность системы счисления — возможность представления как можно большего количества чисел с использованием как можно меньшего общего количества знаков. | 
- Троичная логика включает в себя почти все возможности двоичной логики.
- Компьютер, основанный на троичной логике, обладает большим быстродействием. Например, троичный сумматор и полусумматор в троичном компьютере при сложении тритов выполняет примерно в 1,5 раза меньше операций сложения по-сравнению с двоичным компьютером.
Проблемы реализации
Одним из барьеров, сдерживающих развитие и распространение троичной техники, является неверное представление о необычности и трудной постижимости трехзначной логики. Современная формальная логика (как традиционная, так и математическая) основана на принципе двузначности. Кроме того, электронные компоненты для построения логики, использующие более двух состояний, требуют больше материальных затрат на их производство, достаточно сложны в реализации, и потребляют больше электроэнергии, поэтому троичные компьютеры занимают очень малое место в истории. Использование двоичных компьютеров — более простых и дешёвых в реализации — практически полностью затмило применение троичных компьютеров.
Перспективы развития
Одноместные операции
Очевидно, что в троичной логике всего существует одноместных операций.
, и — операторы инверсии. и сохраняют состояние и соответственно.
, — операторы выбора. Превращают одно из трёх состояний в , а остальные две приобретают значение .
и — операторы модификации, соответственно увеличение и уменьшение трита на единицу по модулю три. При переполнении трита счёт начинается заново ().
"", " " и "" — фунцкии, не зависящие от аргумента .
| - | - | - | ||
| - | - | 0 | ||
| - | - | + | ||
| - | 0 | - | ||
| - | 0 | 0 | ||
| - | 0 | + | ||
| - | + | - | ||
| - | + | 0 | ||
| - | + | + | ||
| 0 | - | - | ||
| 0 | - | 0 | ||
| 0 | - | + | ||
| 0 | 0 | - | ||
| 0 | 0 | 0 | ||
| 0 | 0 | + | ||
| 0 | + | - | ||
| 0 | + | 0 | ||
| 0 | + | + | ||
| + | - | - | ||
| + | - | 0 | ||
| + | - | + | ||
| + | 0 | - | ||
| + | 0 | 0 | ||
| + | 0 | + | ||
| + | + | - | ||
| + | + | 0 | ||
| + | + | + | 
Остальные функции образуются путём сочетания операторов выбора с операторами инверсии и модификации.
Дизъюнкция и конъюнкция
Всего в троичной логике существует двухместные операции. Для реализации любой из них при использовании сколь угодного числа переменных достаточно использовать операции выбора и наиболее простые двухместные операции: дизъюнкция и конъюнкция.
В троичной логике более наглядно использование префиксной нотации для этих операций.
Таблица результатов дизъюнкции двух переменных.
| - | 0 | + | |
| 0 | 0 | + | |
| + | + | + | 
Таблица результатов конъюнкции двух переменных.
| - | - | - | |
| - | 0 | 0 | |
| - | 0 | + | 
Алгебраические свойства
- Свойства констант:
- Для конъюнкции и дизъюнкции в троичной логике сохраняются коммутативный, ассоциативный и дистрибутивный законы, закон идемпотентности.
- Закон двойного отрицания (отрицания Лукашевича) и тройного (циклического) отрицания:
- Буквальное определение циклического отрицания вытекает из следующих свойств:
- Имеет место быть неизменность третьего состояния ("0") при отрицании Лукашевича:
Для законов двоичной логики, не справедливых для троичной, существуют их троичные аналоги.
- Закон несовместности состояний (аналог закона противоречия в двоичной логике):
- Закон исключённого четвёртого (вместо закона исключённого третьего), он же закон полноты состояний:
- Трёхчленный закон Блейка-Порецкого:
- Закон трёхчленного склеивания:
- Закон обобщённого трёхчленного склеивания:
- Антиизотропность отрицания Лукашевича:
, или
, или
, или
, или
