Двусторонний детерминированный конечный автомат
Определение: |
Двусторонний детерминированный конечный автомат (2ДКА) (англ. Two-way deterministic finite automaton (2DFA)) — набор из восьми элементов | , где — алфавит (англ. alphabet), — множество состояний (англ. finite set of states), — левый маркер конца строки, — правый маркер конца строки, — начальное (стартовое) состояние (англ. start state), — допускающее состояние (англ. accept state), — отвергающее состояние (англ. reject state), — функция переходов (англ. transition function).
Также должны быть удовлетворены следующие условия:
- для некоторого ,
- для некоторого ,
и
- ,
- ,
- ,
- .
Регулярность языка
Рассмотрим длинную входную строку
и разобьем на две подстроки . Будем считать, что . Пусть и . Так как у нас наш автомат может производить чтение в любом направлении, то граница и может быть пересечена несколько раз. Каждый раз, когда автомат пересекает границу справа налево (то есть из в ), он выходит из в состояние . Когда пересечение происходит снова слева направо (если оно вообще происходит), то автомат выходит из в состояние . Теперь, если 2ДКА перейдет в в состояние заново, то он снова может появиться в состоянии . Более того, состояние зависит исключительно от и . Обозначим такое отношение через . Мы может записать все такие отношения в виде конечной таблицы , где — множество состояний 2ДКА, а и будут описаны ниже.На входной строке
2ДКА начнет чтение с левого маркера конца строки. В процессе работы автомата позиция чтения будет меняться. В конце концов это позиция пересечет слева направо границу между и . В первый раз, когда это произойдет в каком-нибудь состоянии (для этого мы и выделили ). Так же автомат может никогда не выйти из . В таком случае мы запишем . Состояние дает немного информации о , но только конечное количество, поскольку существует только конечное количество вариантов для . Отметим, что зависит только от и не зависит от . Если на вход подавалась строка вместо , то в таком случае при пересечении границы из в автомат также был бы в состоянии , потому что его значение до того момента определялось только и до тех пор все, что находится справа от границы никак не влияет.Если
, то 2ДКА в бесконечном цикле внутри , и он никогда не допустит и не отвергнет входную строку.Предположим, что 2ДКА переходит из
в и спустя время перейти обратно в состояние . Если это происходит, то потом:- либо снова произойдет переход из в некоторое состояние . В таком случае мы определим .
- либо никогда не перейдет. В таком случае .
Ещё раз отметим, что
зависит только от и и не зависит от . Если автомат переходит в справа в состояние , то тогда он появится заново в состоянии (или никогда не перейдет, если ), потому что автомат детерминированный, и его поведение полностью определяется и состоянием, в которое он вошел.Если мы запишем
для каждого состояния вместе с , это даст нам всю информацию о , которую можно перенести через границу между и . Все это позволит узнать сразу после пересечения границы, а также посмотреть значения . Если — другая строка, такая что , то тогда и будут неразличимы.Заметим, что у нас конечное число возможных таблиц
, а именно , где — размер множество . Таким образом, у нас конечное количество информации о , которое мы может перенести через границу справа от , и которое закодировано у нас в таблицe .Отметим также, что если
и автомат допускает строку , то тогда он допускает и строку , потому что последовательность состояний перенесенных через границу и (либо и ) в любом направлении полностью определяется таблицами и строкой . Чтобы допустить строку , автомат должен в какой-то момент прочитать правый маркер конца строки, находясь в допускающем состоянии .Теперь мы может использовать теорему Майхилла-Нероуда, чтобы показать, что язык регулярный.
нашего автоматаотношение эквивалентности на множестве слов в алфавите. Таким образом, если 2 строки имеют одинаковые таблицы, то тогда они эквивалентны отношением . Поскольку у нас только конечное число таблиц, отношение имеет только конечное количество классов эквивалентности, самое большее один для каждой таблицы. По теореме — регулярный язык, ч.т.д.
, где —Пример
Рассмотрим следующий язык
при .Он может быть легко распознан с помощью следующего недетерменированного конечного автомата.
Теперь построим на его основе ДКА. Мы можем построить автомат
, который запоминает последние входных символов. Следовательно, когда мы находимся с состоянии, соответствующему подстроке , и читаем очередной символ , то мы переходим в состояние, которому уже будет соответствовать подстрока . Однако, в случае автомат переходит в допускающее состояние, где в цикле может переходить на любому символу. Следует отметить, что такая стратегия строит ДКА c состояниями. Ниже представлен автомат , который распознает язык .Покажем, что построенные таким образом автоматы будут минимальными.
- Каждые две попарно различных строки и длины различимы. Чтобы доказать это, достаточно рассмотреть строку , где — самая левая позиция символа, в которой начинают различаться строки и , и проверить, что ровно одна строка или принадлежит .
- Каждая строка длины не принадлежит и, следовательно, различима от строки , которая принадлежит .
- Таким образом, строк в являются попарно различимыми для . Как следствие, — минимальное количество состояний для ДКА, который способен распознать язык .
Чтобы определить, что строка
принадлежит языку , нужно для проверить, что . Строка будет допустимой, если условие сработает хотя бы для одного . Этот алгоритм может быть просто реализован с помощью 2ДКА. Будем для каждого двигаться на позиций вперед, а потом на позиций назад до позиции . Кроме того, при движении с позиции до автомат должен помнить сохраняется ли условие . Такой подход требует состояний.