Формула Зыкова

Материал из Викиконспекты
Версия от 13:36, 26 октября 2010; Nikita.Ofitserov (обсуждение | вклад) (Доказательство)
Перейти к: навигация, поиск
Эта статья находится в разработке!
Определение:
Независимым множеством (кокликой, англ. coclique) в графе [math]G[/math] называется непустое [math]S \subset VG: \forall v,u \in S\[/math] ребро [math](v,u) \notin EG[/math].
Теорема (Зыкова):
Хроматический многочлен графа [math]G[/math] [math]P(G,x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}[/math], где [math]pt(G,i)[/math] — число способов разбить вершины [math]G[/math] на [math]i[/math] независимых множеств.
Доказательство:
[math]\triangleright[/math]

Найдём число [math]x[/math]-раскрасок графа [math]G[/math], в которых используется точно [math]i[/math] цветов ([math]1 \le i \le x[/math]). Для получения такой раскраски сначала выберем одним из [math]pt(G,i)[/math] способов разбиение графа [math]G[/math] на [math]i[/math] независимых множеств, а затем одним из [math]{x\choose i} i! = x^{\underline i}[/math] способов [math]i[/math] упорядоченных цветов из [math]x[/math].

При [math]i \gt x[/math] число [math]x[/math]-раскрасок графа [math]G[/math], в которых используется точно [math]i[/math] цветов равно 0, так же как и [math]x^{\underline i}[/math].
[math]\triangleleft[/math]

Литература

  1. Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: Графы, матроиды, алгоритмы. — Ижевск: НИЦ «РХД», 2001. — С. 140—141. — ISBN 5-93972-076-5