Фундаментальные циклы графа
Версия от 21:16, 27 октября 2010; 192.168.0.2 (обсуждение)
Определение
Определение: |
Рассмотрим каркас | графа . — все ребра графа которые не входят в каркас . При добавлении образуется простой цикл . Семейство циклов называется фундаментальными циклами графа относительно каркаса
Свойства
Теорема: |
Множество всех фундаментальных циклов относительно любого каркаса графа образует базис циклического пространства этого графа. |
Доказательство: |
Рассмотрим каркас Докажем, что любой цикл из циклического пространства графа графа и фундаментальные циклы относительно каркаса . В каждом из есть ребро которое принадлежит ровно одному из . Поэтому сумма различных фундаментальных циклов относительно каркаса не является пустым графом, из чего следует, что линейно независимы. является суммой фундаментальных циклов. Пусть Z — цикл циклического пространства графа G, ребра принадлежащие и не принадлежащие . Рассмотрим граф . Каждое из ребер встречается ровно в двух слагаемых — и . Значит содержит только ребра из . Так как простые циклы, то степени всех их вершин четны, степени вершин тоже четны по лемме, значит степени всех вершин четны. Если непустой граф то в есть цикл, значит цикл есть и в . Значит пустой граф, откуда следует что . |
Литература
Харари Ф. Теория графов / пер. с англ. — изд. 4-е — М.: Книжный дом «ЛИБРОКОМ», 2009. — с.55. — ISBN 978-5-397-00622-4.