Участник:Kabanov
Есть множество точек на плоскости. Нужно найти две самые удалённые из них.
Найдём выпуклую оболочку исходного множества и получим более простую задачу: найти две наиболее удалённые вершины в выпуклом многоугольнике. Сделать это можно за линейное время с помощью метода, который называется вращающиеся калиперы (англ. rotating calipers).
Обоснование: Пусть диаметр с одной стороны содержит точку, которая не принадлежит выпуклой оболочке. Тогда продлим диаметр в эту сторону до пересечения с выпуклой оболочкой. Очевидно, он станет длиннее. А потом заметим, что диаметр станет еще больше, если сдвинуть его к одному из концов ребра, в которое мы уперлись. Конец.
Содержание
Постановка задачи
Пусть
— выпуклый многоугольник, в котором порядок обхода вершин направлен против часовой стрелки, и никакие три последовательные точки не лежат на одной прямой. Найти пару чисел , такие, что максимально.Вращающиеся калиперы
Опорные прямые
Определение: |
Прямая | называется опорной прямой (англ. line of support) для многоугольника , если его внутренность лежит по одну сторону от , при этом проходит хотя бы через одну из вершин .
|
Так как
и — какие угодно граничные точки фигуры , принадлежащие соответственно прямым и , то из перпендикулярности отрезка к прямым и следует, что ни одна из прямых , не может иметь с фигурой целый общий отрезок. Другими словами, каждая из этих прямых содержит единственную граничную точку фигуры .
|
Алгоритм
Заметим, что параллельные опорные прямые можно провести не через любую пару точек.
Определение: |
Точки, через которые можно провести параллельные опорные прямые, будем называть противолежащими (англ. antipodal). |
Благодаря предыдущей теореме нам нужно рассмотреть только противолежащие точки. Задача в том, чтобы рассмотреть их, не перебирая все пары точек.
Рассмотрим рисунок справа. Теперь будет вращаться вокруг , а продолжит вращаться вокруг , и следующей парой противолежащих точек станет . Продолжая таким образом, мы сгенерируем все пары противолежащих точек, так как параллельные линии пройдут под всеми возможными углами. Определение новой пары противолежащих точек требует только одного сравнения углов, которое можно выполнить с помощью предиката поворота. |
и — опорные прямые, проходящие через вершины и соответственно. Значит, — противолежащая пара точек. Если начать вращать прямые против часовой стрелки вокруг данных точек, они будут оставаться опорными прямыми, пока одна из прямых не станет накладываться на сторону многоугольника. В нашем примере, при вращении к позиции , коснётся точки раньше, чем коснётся , поэтому становится новой парой противолежащих точек.
Асимптотика
Теорема: |
Представленный выше алгоритм генерирует все пары противолежащих точек в многоугольнике , состоящем из вершин, за время . |
Доказательство: |
Данный алгоритм можно реализовать следующим образом: хранить указатели на противолежащие вершины, и на каждой итерации алгоритма увеличивать либо один из данных указателей, либо сразу оба (когда обе прямые проходят через сторону многоугольника), и заканчивать работу, когда опорные прямые сделают полный круг. Таким образом, каждая из вершин будет посещена каждой из прямых не более двух раз. |
Ссылки
- M.I. Shamos Computational geometry, 1978 — С. 76.
- Яглом И.М., Болтянский В.Г. Выпуклые фигуры, 1951 — С. 20, 144.
- Реализация - Github.com