Список заданий по ДМ 2015 осень
Версия от 13:22, 12 сентября 2015; 194.85.160.133 (обсуждение)
<wikitex>
Дискретная математика, 1 семестр
- Пусть $R$ и $S$ - рефлексивные отношения на $A$. Будет ли рефлексивным их а) объединение? б) пересечение? В этом и следующих заданиях, если ответ отрицательный, при демонстрации контрпримера удобно использовать представление отношения в виде ориентированного графа.
- Пусть $R$ и $S$ - симметричные отношения на $A$. Будет ли симметричным их а) объединение? б) пересечение?
- Пусть $R$ и $S$ - транзитивные отношения на $A$. Будет ли транзитивным их а) объединение? б) пересечение?
- Пусть $R$ и $S$ - антисимметричные отношения на $A$. Будет ли антисимметричным их а) объединение? б) пересечение?
- Определим $R^{-1}$ следующим образом: если $xRy$, то $yR^{-1}x$. Выполнено ли соотношение $RR^{-1} = I$, где $I$ - отношение равенства? Выполнен ли закон сложения степенией $R^iR^j=R^{i+j}$, если $i$ и $j$ разного знака?
- Пусть $R$ обладает свойством $X$. Будет ли обладать свойством $X$ отношение $R^{-1}$? Следует проанализировать $X$ - рефлексивность, антирефлексивность, симметричность, антисимметричность, транзитивность
- Пусть $R$ и $S$ - транзитивные отношения на $A$. Будет ли транзитивным их композиция?
- Пусть $R$ и $S$ - антисимметричные отношения на A. Будет ли антисимметричным их композиция?
- Постройте пример рефлексивного, симметричного, но не транзитивного отношения
- Постройте пример рефлексивного, антисимметричного, но не транзитивного отношения
- Является ли отношение $R$, такое что $(a, b) R (c, d)$, если $ad = bc$ на ${\mathbb Z}^+ \times {\mathbb N}$ отношением эквивалентности?
- Может ли отношение частичного порядка быть отношением эквивалентности? Если да, то в каких случаях?
- Можно ли в определении отношения эквивалентности убрать требование рефлексивности отношения, потому что оно следует из симметричности и транзитивности?
- Выразите в явном виде "и", "или" и "не" через стрелку Пирса
- Выразите в явном виде "и", "или" и "не" через штрих Шеффера
- Можно ли "и", "или" и "не" выразить через функции из множества $\{x\oplus y, x = y}$?
- Можно ли "и", "или" и "не" выразить через функции из множества $\{x\to y, \neg x\}$?
- Можно ли "и", "или" и "не" выразить через функции из множества $\{{\mathbf 0}, \langle xyz\rangle, \neg x\}$ ?
- Можно ли "и", "или" и "не" выразить через функции из множества $\{x \to y, \langle xyz\rangle, \neg x\}$ ?
- Можно ли выразить "и" через "или"?
- Выразите медиану 5 через медиану 3
- Выразите медиану $2n+1$ через медиану 3
- Булева функция называется пороговой, если $f(x_1, x_2, \ldots, x_n) = 1$ тогда и только тогда, когда $a_1x_1+a_2x_2+\ldots+a_nx_n \ge b$, где $a_i$ и $b$ - вещественные числа. Докажите, что "и" и "или" - пороговые функции.
- Приведите пример непороговой функции
- Рассмотрим булеву функцию $f$. Обозначим как $N(f)$ число наборов аргументов, на которых $f$ равна 1. Например, $N(\vee) = 3$. Обозначим как $\Sigma(f)$ сумму всех наборов аргументов, на которых $f$ равна 1 как векторов. Например, $\Sigma(\vee) = (2, 2)$. Докажите, что если для пороговой функции $f$ и функции $g$ выполнено $N(f) = N(g)$ и $\Sigma(f) = \Sigma(g)$, то $f = g$