Материал из Викиконспекты
Пусть X - абстрактное множество.
[math] X \times X = \{ (x_1, x_2): x_i \in X \} [/math] - является прямым произведением множества X на себя
Определение: |
[math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] является метрикой на X, если выполнимы аксиомы
- [math] \rho (x, y) \ge 0 ; \rho (x, y) = 0 \Leftrightarrow x = y [/math]
- [math] \rho (x, y) = \rho (y, x) [/math]
- [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] - неравенство треугольника
|
Пара ([math] X, \rho[/math]) является метрическим пространством (при соблюдении аксиом 1-3)
Примеры:
Числовая ось: [math] x, y \in \mathbb{R} \Rightarrow \rho (x, y) = |x - y| [/math]
[math] R^n = R \times R \times \dots \times R (n raz) ; \overrightarrow{x} = (x_1, \dots, x_n) [/math]
- [math] \rho_1 (x, y) = \sum\limits_{k = 1}^n |x_k - y_k| [/math]
- [math] \rho_2 (x, y) = \max\limits_{k = 1 \dots n} |x_k - y_k| [/math]
То есть, одно и то же множество можно по-разному превращать в метрическое пространство. Для метрических пространств основное значение имеет множество, являющееся открытым шаром(V_r).
Определение: |
Пусть [math] (X, \rho) [/math] - метрическое пространство, [math] r \gt 0, a \in X [/math], тогда [math] V_r(a) = \{x: \rho(x, a) \lt r \} [/math] |
Эта статья находится в разработке!