Поток минимальной стоимости

Материал из Викиконспекты
Версия от 14:09, 24 января 2016; Mr ivan777 (обсуждение | вклад) (Алгоритмы решения)
Перейти к: навигация, поиск

Задача о потоке минимальной стоимости

Определение:
Пусть дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Тогда общая стоимость потока из [math]S[/math] в [math]T[/math]:
[math]p(u,v) = \sum\limits_{u,v \in V, f(u,v)\gt 0} c(u,v) \cdot f(u,v)[/math]

Свойства стоимости

  • Поток не может превысить пропускную способность.
[math]f(u,v) \leqslant c(u,v)[/math]
  • Поток из [math]u[/math] в [math]v[/math] должен быть противоположным потоку из [math]v[/math] в [math]u[/math].
[math]f(u, v)=-f(v, u)[/math]
  • Сохранение потока. Для каждой вершины, сумма входящего и исходящего потоков равно 0.
[math] \sum\limits_{w \in V} f(u,w) = 0[/math]


Задача:
Дана сеть [math]G(V,E)[/math]. [math]S, T \in V[/math] — источник и сток. [math]\forall (u,v) \in E[/math] [math]\exists c(u, v), f(u,v)[/math] — стоимость пересылки единицы потока и пропускная способность. Требуется найти максимальный поток, суммарная стоимость которого минимальна.


Алгоритмы решения

Метод устранения отрицательных циклов в остаточной сети

Метод дополнения потока вдоль путей минимальной стоимости

Поиск потока минимальной стоимости методом дополнения вдоль путей минимальной стоимости.

Использование потенциалов Джонсона

Использование потенциалов Джонсона при поиске потока минимальной стоимости (модификация предыдущего алгоритма).

См. также

Источники информации