Будем рассматривать двумерный случай.
Матрица преобразования - это некоторая матрица [math] 3 \times 3 [/math]. Мы будем рассматривать матрицы вида
[math] F = \left(\begin{array}{ccc}
a & b & t_x\\
c & d & t_y\\
0 & 0 & 1
\end{array}\right) [/math]
Посмотрим как меняются координаты при таком преобразовании.
[math] F \left(\begin{array}{c}
x\\
y\\
1
\end{array}\right) =
[/math]
[math] \left(\begin{array}{ccc}
a & b & t_x\\
c & d & t_y\\
0 & 0 & 1
\end{array}\right) \cdot
[/math]
[math] \left(\begin{array}{c}
x\\
y\\
1
\end{array}\right) =
[/math]
[math] \left(\begin{array}{c}
a x + b y + t_x\\
c x + d y + t_y\\
1
\end{array}\right)
[/math].
То есть новые координаты как-то линейно зависят от старых.
Рассмотрим частные случаи преобразований.
Базовые преобразования
Параллельный перенос
Задаёт преобразование [math] x \rightarrow x + t_x ,\ y \rightarrow y + t_y [/math].
Обозначается [math] T_{\overrightarrow v} [/math], где [math] \overrightarrow v = (t_x, t_y) [/math] — вектор параллельного переноса.
[math] T_{(t_x, t_y)} = \left(\begin{array}{ccc}
1 & 0 & t_x\\
0 & 1 & t_y\\
0 & 0 & 1
\end{array}\right) [/math]
Пример
Задача: Найдите новые координаты точки [math] (6, 9) [/math] после параллельного переноса плоскости на вектор [math] \overrightarrow v = (1, 2) [/math].
Решение: [math] T_{(a, b)} (\left(\begin{array}{c}
6\\
9\\
1
\end{array}\right)) =
[/math]
[math]
\left(\begin{array}{ccc}
1 & 0 & 1\\
0 & 1 & 2\\
0 & 0 & 1
\end{array}\right) \cdot
[/math]
[math]
\left(\begin{array}{c}
6\\
9\\
1
\end{array}\right) =
[/math]
[math]
\left(\begin{array}{c}
6 + 1\\
9 + 2\\
1
\end{array}\right) =
[/math]
[math]
\left(\begin{array}{c}
7\\
11\\
1
\end{array}\right)
[/math]
Вполне ожидаемый ответ.
Масштабирование вдоль осей
Задаёт преобразование [math] x \rightarrow s_x x ,\ y \rightarrow s_y y [/math].
Будем обозначать как [math] S_{s_x, s_y} [/math]. Числа [math] s_x [/math] и [math] s_y [/math] называются коэффициентами масштабирования.
[math] S_{s_x, s_y} = \left(\begin{array}{ccc}
s_x & 0 & 0\\
0 & s_y & 0\\
0 & 0 & 1
\end{array}\right) [/math]
Пример
Задача: Найдите новые координаты точки [math] (3, 5) [/math] после масштабирования по оси [math] O_x [/math] с коэффициентом 2 (по оси [math] O_y [/math] масштаб остаётся таким же).
Решение: [math] S_{2, 1} (\left(\begin{array}{c}
3\\
5\\
1
\end{array}\right)) =
[/math]
[math]
\left(\begin{array}{ccc}
2 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array}\right) \cdot
[/math]
[math]
\left(\begin{array}{c}
3\\
5\\
1
\end{array}\right) =
[/math]
[math]
\left(\begin{array}{c}
2 \cdot 3\\
1 \cdot 5\\
1
\end{array}\right) =
[/math]
[math]
\left(\begin{array}{c}
6\\
5\\
1
\end{array}\right)
[/math]
Поворот относительно начала координат
Обозначается [math] R^\alpha [/math], где [math] \alpha [/math] — угол поворота.
Как обычно, [math] \alpha \gt 0 [/math] при повороте против часовой стрелки, и [math] \alpha \lt 0 [/math] при повороте по часовой стрелке.
[math] R^\alpha = \left(\begin{array}{ccc}
\cos \alpha & - \sin \alpha & 0\\
\sin \alpha & \cos \alpha & 0\\
0 & 0 & 1
\end{array}\right) [/math]
Пример
Задача: Найдите новые координаты точки [math] (5, 1) [/math] после поворота плоскости на [math] 90 [/math] °.
Решение: [math] R^{90} = \left(\begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{array}\right)
[/math]
[math] R^{90} (\left(\begin{array}{cc}
5\\
1\\
1
\end{array}\right)) =
[/math]
[math]\left(\begin{array}{ccc}
0 & -1 & 0\\
1 & 0 & 0\\
0 & 0 & 1
\end{array}\right) \cdot
[/math]
[math] \left(\begin{array}{cc}
5\\
1\\
1
\end{array}\right) =
[/math]
[math] \left(\begin{array}{cc}
-1\\
5\\
1
\end{array}\right)
[/math]
Замечание
[math] R^{180} = \left(\begin{array}{ccc}
-1 & 0 & 0\\
0 & -1 & 0\\
0 & 0 & 1
\end{array}\right) [/math], то есть центральная симметрия относительно начала координат меняет координаты точки на противоположные.
Тождественное преобразование
Это преобразование, оставляющее все точки неподвижными.
Его матрица: [math] I = \left(\begin{array}{ccc}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{array}\right)
[/math]