1p1sumu

Материал из Викиконспекты
Перейти к: навигация, поиск

[math]1 \mid p_i=1\mid \sum U_i[/math]


Задача:
Дан один станок и [math]n[/math] работ, для которых заданы их дедлайны [math]d_i[/math], а все времена выполнения на этом станке [math]p_i = 1[/math]. Нужно успеть выполнить как можно больше работ.


Алгоритм

Чтобы получить оптимальное расписание, будем строить максимальное множество [math]S[/math] тех работ, которые успеют выполниться. Само расписание тогда будет состоять из всех работ из [math]S[/math], упорядоченных по неубыванию дедлайнов. Во время сортировки стоит учитывать, что дедлайны могут значительно превосходить количество задач. В таком случае необходимо предварительно пересчитать дедлайны по формуле [math]d_i = \min\{d_i, n\}[/math] (в оптимальном расписании мы не выполняем работы позже времени [math]time=n[/math]). Для упорядочивания дедлайнов будем использовать карманную сортировку(bucket sort).

Псевдокод

function schedule(d: int[n]): int[]
  int[] S = []
  int time = 0
  for i = 1 to n do
    d[i] = min(d[i], n)
  Сортиуем d
  for i = 1 to n do
    if time < d[i]
      S = S [math]\cup[/math] {i}
      time += 1
return S

Во избежание лишнего копирования массивов, мы можем делать проход по массиву блоков(bucket'ов) и для каждого блока проходить по спискам работ внутри него. Начальное значение [math] time = 0[/math]. После рассмотрения очередной работы мы будем добавлять ее в расписание и увеличивать [math] time[/math] на 1. Тогда, если значение [math] time[/math] становится равным номеру блока, то мы переходим к следующему блоку, а нерассмотренные задачи помечаем как просроченные и выполняем в конце.

Время работы

Cортировку работ по неубыванию дедлайнов осуществляем с помощью карманной сортировки за [math]O(n)[/math], а значит и весь алгоритм будет работать за [math]O(n)[/math].

Корректность и оптимальность

В результате выполнения данного алгоритма будет получено корректное расписание, в котором каждая работа встречается не более одного раза. Вначале расписания будут стоять все работы, которые мы успеваем выполнить до дедлайна. Остальные работы дописываются в конец в произвольном порядке.

Оптимальность полученного расписания доказывается аналогично [math]1 \mid \mid \sum w_{i}U_{i}[/math].

См. также

Источники информации

  • Peter Brucker. «Scheduling Algorithms» — «Springer», 2006 г. — 86 стр. — ISBN 978-3-540-69515-8