Использование обхода в глубину для поиска цикла
Постановка задачи
Пусть дан ориентированный граф без петель и кратных рёбер. Требуется проверить наличие цикла в этом графе.
Решим эту задачу с помощью поиска в глубину за O (M).
Алгоритм
Произведём серию поисков в глубину в графе. Т.е. из каждой вершины, в которую мы ещё ни разу не приходили, запустим поиск в глубину, который при входе в вершину будет красить её в серый цвет, а при выходе - в чёрный. И если поиск в глубину пытается пойти в серую вершину, то это означает, что мы нашли цикл.
Сам цикл можно восстановить проходом по массиву предков.
Доказательство
Пусть дан граф белым путям. Тогда если из рассматриваемой вершины существует ребро в серую вершину , то это значит, что из вершины существует путь в и из вершины существует путь в . И так как оба эти пути не пересекаются, то существует цикл.
. Запустим . Рассмотрим выполнение процедуры поиска в глубину от некоторой вершины . Так как все серые вершины лежат в стеке рекурсии, то для них вершина достижима поРеализация
Здесь приведена реализация алгоритма на С++.
С++
vector < vector<int> > graph; vector<int> color; void dfs(int index) { color[index] = 1; // красит вершину в серый цвет for (vector<int>::iterator i = graph[index].begin(); i != graph[index].end(); ++i) { if ( color[*i] == 0 ) dfs(*i); if ( color[*i] == 1 ) print(); // вывод ответа } color[index] = 2; // красит вершину в черный цвет }