Раскраска двудольного графа в два цвета

Материал из Викиконспекты
Версия от 22:32, 22 ноября 2016; 188.227.78.144 (обсуждение) (Новая страница: « == Раскраска в 2 цвета == {{Теорема |statement= Граф <tex>2-</t...»)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Раскраска в 2 цвета

Теорема:
Граф [math]2-[/math]раскрашиваемый тогда и только тогда, когда он двудольный.
Доказательство:
[math]\triangleright[/math]

Если множество вершин двудольного графа можно разделить на два независимых подмножества так, что ни одна из вершин ни в одном из этих подмножеств не является смежной к вершине из этого же подмножества, тогда граф [math]G = (W, E)[/math][math]2-[/math]раскрашиваем. [math]\chi(G) = 2[/math].

Если же граф [math]2-[/math] раскрашиваемый, то множество его вершин можно разделить на два непересекающихся множества так, чтобы в каждом из них не нашлось двух смежных вершин. Тогда граф будет двудольны.
[math]\triangleleft[/math]

Теорема Кёнига

Теорема (Кёниг):
Граф [math] G [/math] является двудольным тогда и только тогда, когда все циклы в графе [math] G [/math] имеют чётную длину.
Доказательство:
[math]\triangleright[/math]

[math]\Rightarrow[/math] Рассмотрим двудольный граф. Начнем цикл в доле [math] U [/math]. Нужно пройти по четному числу ребер, чтобы вернуться в [math] U [/math] снова. Следовательно, при замыкании цикла число ребер будет четным.

[math]\Leftarrow[/math] Пусть ненулевой граф [math] G [/math] связен и не имеет циклов нечетной длины. Выберем произвольно вершину [math] u [/math] и разобьем множество всех вершин на два непересекающихся множества [math] U [/math] и [math] V [/math] так, чтобы в [math] U [/math] лежали вершины [math] v_0 [/math], такие что кратчайшая цепь [math](u, v_0)[/math] была чётной длины, а в [math] V [/math] соответственно вершины [math]v_1[/math], для которых длина цепи [math](u, v_1)[/math] — нечётная. При этом [math] u \in U [/math].

В графе [math] G [/math] нет ребер [math]ab[/math], таких что [math]a, b [/math] лежат одновременно в [math] U [/math] и [math]V[/math]. Докажем это от противного. Пусть [math]a, b \in U [/math]. Зададим [math] P_0 [/math] — кратчайшая [math] (u, a) [/math] цепь, а [math] P_1 [/math] — кратчайшая [math] (u, b) [/math] цепь. Обе цепи четной длины. Пусть [math] v_0 [/math] — последняя вершина цепи [math] P_0 [/math], принадлежащая [math] P_1 [/math]. Тогда подцепи от [math] u [/math] до [math] v_0 [/math] в [math] P_0[/math] и [math]P_1[/math] имеют одинаковую длину (иначе бы, пройдя по более короткой подцепи от [math]u[/math] до [math]v_0[/math] мы смогли бы найти более короткую цепь от [math] u [/math] до [math] a [/math] или от [math] u [/math] до [math] b [/math], чем цепь [math] P_0 [/math] или [math] P_1 [/math] ). Так как подцепи от [math] v_0 [/math] до [math] a [/math] и от [math] v_0 [/math] до [math] b [/math] в цепях [math] P_0 [/math] и [math] P_1 [/math] имеют одинаковую четность, а значит в сумме с ребром [math] ab [/math] они образуют цикл нечётной длины, что невозможно.
[math]\triangleleft[/math]

Следствие

Алгоритм проверки графа на двудольность, используя обход в глубину

Так как граф является двудольным тогда и только тогда, когда все циклы четны, определить двудольность можно за один проход в глубину. На каждом шаге обхода в глубину помечаем вершину. Допустим, мы пошли в первую вершину — помечаем её как [math] 1 [/math]. Затем просматриваем все смежные вершины, и если не помечена вершина, то на ней ставим пометку [math] 2 [/math] и рекурсивно переходим в нее. Если же она помечена и на ней стоит та же пометка, что и у той, из которой шли (в нашем случае [math] 1 [/math]), значит граф не двудольный.

Алгоритм проверки графа на двудольность, используя обход в ширину

Произведём серию поисков в ширину. Т.е. будем запускать поиск в ширину из каждой непосещённой вершины. Ту вершину, из которой мы начинаем идти, мы помещаем в первую долю. В процессе поиска в ширину, если мы идём в какую-то новую вершину, то мы помещаем её в долю, отличную от доли текущей вершину. Если же мы пытаемся пройти по ребру в вершину, которая уже посещена, то мы проверяем, чтобы эта вершина и текущая вершина находились в разных долях. В противном случае граф двудольным не является. По окончании работы алгоритма мы либо обнаружим, что граф не двудолен, либо найдём разбиение вершин графа на две доли.

См. также

Источники информации