Изоморфизмы упорядоченных множеств

Материал из Викиконспекты
Перейти к: навигация, поиск
Определение:
Два частично упорядоченных множества [math]A[/math] и [math]B[/math] называются изоморфными, если между ними существует взаимно однозначное соответствие, сохраняющее порядок.
Более формально, [math] \exists [/math] биекция [math] f:A \rightarrow B : \forall \, a_1,a_2 \in A : a_1 \leqslant a_2 \Leftrightarrow f(a_1)\leqslant f(a_1)[/math]
Теорема:
Конечные линейно упорядоченные множества из одинакового числа элементов изоморфны.
Доказательство:
[math]\triangleright[/math]
Конечное линейно упорядоченное множество всегда имеет наименьший элемент. Возьмём любой элемент [math]x_1[/math]. Если он не наименьший, возьмём любой меньший него [math]x_2[/math], если и он не наименьший, ещё меньший — и так далее. Получим убывающую последовательность [math] x_1 \gt x_2 \gt \dots [/math], которая рано или поздно должна оборваться, т.к. множество конечное)
[math]\triangleleft[/math]