Критерий Тарьяна минимальности остовного дерева
Содержание
Критерий Тарьяна
Теорема (критерий Тарьяна минимальности остовного дерева): |
Остовное дерево минимально тогда и только тогда, когда для любого ребра, не принадлежащего остову, цикл, образуемый этим ребром при добавлении к остову, не содержит рёбер тяжелее этого ребра. |
Доказательство: |
Легко заметить, что остовное дерево, не удовлетворяющее условию, не минимально. Если для какого-то ребра оказалось, что оно легче некоторых рёбер образуемого цикла, то можно получить остов с меньшим весом, добавив это ребро в остов, и удалив самое тяжелое ребро из цикла. Если же это условие не выполнилось ни для одного ребра, то вес остова при добавлении не изменится.
function Gentric MST(G): A = dfs(i, a, b, c, w, Ch) a[x] = max(a[x], b[i] + w[x][i] - с[i]) // по формуле выше, но без b[x] (прибавим его один раз в конце) b[x] += с[i] a[x] += b[x] // так как в a[x] пока что хранится только на сколько мы можем увеличить ответ если будем использовать вершину x c[x] = max(a[x], b[x]) Для доказательства минимальности алгоритм Краскала, который представляет собой применение леммы о безопасном ребре некоторое число раз. На каждом шаге к строящемуся остову будет добавляться ребро минимального веса, пересекающего некоторый разрез, а этот вес, как было показано в утверждении выше, равен весу ребра из , пересекающего этот разрез. Поэтому вес получившегося минимального остова построим минимальное остовное дерево графа используя будет равен весу , что и требовалось. |
Уникальность остовного дерева
Задача: |
Поиск минимального остовного дерева и проверка его на уникальность. |
Алгоритм решения
Построим минимальное остовное дерево используя алгоритм Краскала. Рассмотрим рёбра вне остова в любом порядке. Очередное обозначим . Рассмотрим максимальное ребро на пути и внутри остова:
- Если его вес совпадает с весом ребра, то при добавлении ребра в остов, мы получим остов с циклом на котором несколько рёбер имеют одинаковый вес, значит мы можем удалить любое из них и остовное дерево будет всё ещё минимальным, это нарушает уникальность дерева. На этом алгоритм завершается и по критерию Тарьяна мы можем сказать, что в графе можно построить несколько остовных деревьев.
- Если его вес больше ребра, то заменив ребро мы получим остов с большим весом, этот случай не влияет на уникальность.
- Его вес не может быть меньше ребра из остова, иначе мы смогли бы построить минимальное остовное дерево с меньшим весом.
После рассмотрения всех рёбер, если мы не нашли ребро вне остова, при добавлении которого создаётся цикл с максимальным ребром таким же как и на пути heavy-light декомпозиции.
и , то в графе нету другого остовного дерева и наше дерево уникально. Искать максимальное ребро на пути и в дереве мы можем при помощиАсимптотика
Построение минимального остовного дерева работает за
, нахождение максимального ребра за , максимальное количество рёбер вне остова не больше , каждое ребро проверяется за . Построение heavy-light декомпозиции работает за , остов мы построим один раз, heavy-light декомпозицию тоже один раз, каждое ребро мы не больше одного раза проверим на замену, сложность алгоритма .См.также
Литература
- Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. — Алгоритмы. Построение и анализ.