Теорема о поглощении
Версия от 16:58, 12 марта 2018; Hazzus (обсуждение | вклад) (Чуть подробнее расписал рассуждения в конце)
Определение: |
Матрицу | называют непоглощающей, если она не содержит поглощающих состояний. То есть
Определение: |
Стохастическую матрицу с поглощающими состояниями и непоглощающими, можно перевести в каноническую форму:
где , — единичная матрица ( ), — нулевая матрица ( ), — ненулевая поглощающая матрица ( ) и — непоглощающая ( ). Первые состояний переходные и последние состояний поглощающие. |
Теорема (о поглощении): |
Если цепь поглощающая, то с вероятностью, равной 1, она перейдет в поглощающее состояние. |
Доказательство: |
Пусть матрица переходов, где элемент равен вероятности перехода из -го состояния в -ое. Приведем ее в каноническую форму: —
. Произведение единичной матрицы на саму себя есть единичная матрица ( ); — некоторые значения (не важны для доказательства теоремы, т.к. чтобы доказать теорему достаточно доказать, что непоглощающие состояния стремятся к 0).Продолжив вычисления, получим, что имеет следующий вид: .Докажем, что , при .
Тогда вероятность перехода в состояние на шаге равна , где — элемент матрицы .В то же время, В итоге получаем, что непоглощающие состояния стремятся к . Возведем обе части в степень , получим: , а значит поглощающие в итоге приходят к , т.е. цепь приходит в поглощающее состояние. |
Литература
- Дж. Кемени, Дж. Снелл "Конечные цепи Маркова"