Расчёт вероятности поглощения в состоянии
Версия от 07:38, 21 марта 2018; Igusev (обсуждение | вклад) (Лишний псевдокод вынесене в одельную статью и редактирован(ссылка добавлена в "Смотри также", имена переменных были обернуты в \mathtt.)
Поглощающее(существенное) состояние цепи Маркова - состояние с вероятностью перехода в самого себя
. Составим матрицу , элементы которой равны вероятности того, что, выйдя из , попадём в поглощающее состояние .Теорема: |
Доказательство: |
Пусть этот переход будет осуществлён за Матрица шагов: → → → ... → → j, где все являются несущественными. Тогда рассмотрим сумму , где - матрица переходов между несущественными состояниями, - из несущественного в существенное. определяется их суммированием по всем длинам пути из i в j: , т.к. , а фундаментальная матрица марковской цепи |
Псевдокод
Выведем ответ: в
-ой строке вероятность поглощения в -ом состоянии. Естественно, для несущественного состояния это , в ином случае где - номер соответствующий -ому состоянию в матрице (т.е. под которым оно располагалось в матрице т.е. значение ). Прибавлять нужно т.к. вероятность поглотиться в -ом поглощающем состоянии, оказавшись изначально в нем же равна .- - вероятность поглощения в -ом состоянии
- - является ли i-е состояние поглощающим
function getAbsorbingProbability(absorbing: boolean[n], G: float[n][n]) float probability[n] for i = 0 to n - 1 prob = 0 if absorbing[i] for j = 0 to nonabs - 1 prob += G[j][position[i]] prob++ prob /= n probability[i] = prob return probability
Смотри также
Источники информации
- Википедия - Цепи Маркова
- Кемени Дж., Снелл Дж. "Конечные цепи Маркова".