Асимптотика коэффициентов функций, связанных между собой уравнением Лагранжа

Материал из Викиконспекты
Перейти к: навигация, поиск
Теорема:
Пусть две производящие функции [math]\varphi = \varphi(s)[/math] и [math]\psi = \psi(t),\, \psi(0) = 1\,[/math] с неотрицательными коэффицентами связаны между собой уравнением Лагранжа [math]\varphi(s) = s\psi(\varphi(s))[/math]. Пусть [math]r \gt 0\,[/math] радиус сходимости ряда [math]\varphi,[/math] причем числовой ряд [math]\varphi(r)[/math] сходится. Тогда радиус сходимости ряда [math]\psi[/math] не меньше [math]\rho = \varphi(r)[/math]. Если числовой ряд [math]\varphi '(r)[/math] также сходится, то радиус сходимости ряда [math]\psi[/math] равен [math]\rho = \varphi(r)[/math].

Замечание

Требование неотрицательности коэффициентов рядов естественно, если мы рассматриваем производящие функции для языков. В этом случае естественно также ожидать, что радиус сходимости производящего ряда для числа неприводимых слов больше радиуса сходимости производящего ряда для числа всех слов в языке (последняя последовательность растет быстрее последовательности чисел неприводимых слов).
Доказательство:
[math]\triangleright[/math]
Докажем, что ряд [math]\psi(s)[/math] сходится абсолютно в любой точке [math]s,\,\left\vert s \right\vert = q \lt \rho[/math]
[math]\triangleleft[/math]