Асимптотика коэффициентов функций, связанных между собой уравнением Лагранжа
Версия от 15:11, 24 июня 2018; Senya (обсуждение | вклад)
Пусть две производящие функции
и связаны между собой уравнением Лагранжа . Мы хотим выяснить, как связаны между собой их радиусы сходимости.Теорема: |
Пусть две производящие функции и с неотрицательными коэффицентами связаны между собой уравнением Лагранжа . Пусть — радиус сходимости ряда причем числовой ряд сходится. Пусть радиус сходимости ряда равен . Тогда
если числовой ряд также сходится. Замечание Требование неотрицательности коэффициентов рядов естественно, если мы рассматриваем производящие функции для языков. В этом случае естественно также ожидать, что радиус сходимости производящего ряда для числа неприводимых слов больше радиуса сходимости производящего ряда для числа всех слов в языке (последняя последовательность растет быстрее последовательности чисел неприводимых слов). |
Доказательство: |
Докажем, что ряд сходится абсолютно в любой точке . Поскольку функция монотонна и непрерывна на отрезке существует точка , такая, что . Поэтому для любой частичной суммы ряда где последнее неравенство следует из предыдущего замечания. Первое утверждение теоремы доказано.
Последний предел существует и, по условию теоремы, положителен. Поэтому функция обратима в окрестности точки что, в свою очередь, противоречит условиям теоремы. |
Отметим, что производящий ряд для чисел Каталана сходится при так как числа Каталана имеют асимптотику а ряд сходится. С другой стороны, коэффиценты производной имеют асимптотику и поэтому ряд расходится. В результате теорема в полном объеме к функции Каталана неприменима, а второе утверждение оказывается неверным.