Список заданий по ДМ 2к 2018 осень
Версия от 12:35, 12 октября 2018; 85.17.65.198 (обсуждение)
- Постройте граф с $n$ вершинами и $m$ ребрами. Здесь и далее "постройте граф с $n$ вершинами, ..." означает, что вы должны рассказать способ для любого $n$ построить искомый граф, либо рассказать, для каких $n$ такой граф существует и указать способ его построить, а для остальных $n$ доказать, что такого графа не существует. Аналогично следует поступить с другими параметрами, указанными в условии задачи.
 - Обозначим как $N(u)$ множество соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N(u)$ совпадают для всех вершин $u$.
 - Обозначим как $N[u]$ множество, содержащее вершину $u$, а также соседей вершины $u$. Постройте граф с $n$ вершинами, в котором множества $N[u]$ совпадают для всех вершин $u$.
 - Постройте граф с $n$ вершинами, где каждая вершина имеет степень $d$.
 - Докажите, что любой граф, содержащий хотя бы две вершины, имеет две вершины одинаковой степени.
 - Обозначим как $\delta(G)$ минимальную степень вершины в графе, как $\Delta(G)$ - максимальную степень вершины в графе. Постройте граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
 - Постройте двудольный граф с $n$ вершинами, в котором $\delta(G) + \Delta(G) > n$.
 - Пусть для двудольного графа выполнено условие: для любой пары не соединенных ребром вершин есть вершина, связанная с обеими этими вершинами. Как устроен такой граф?
 - Докажите, что для любого графа $G$ можно записать в каждой вершине $u$ такое число $d(u)$, что числа $d(u)$ и $d(v)$ имеют общий делитель, отличный от 1, тогда и только тогда, когда в графе $G$ есть ребро $uv$.
 - Граф называется кубическим, если степень всех вершин равна 3. Три вершины графа образуют треугольник, если они попарно соединены ребром. Постройте кубический граф с $n$ вершинами, не содержащий треугольников.
 - Граф называется самодополнительным, если он изоморфен своему дополнению. Приведите примеры самодополнительных графов с 4 и 5 вершинами. Докажите, что если граф является самодополнительным, то он содержит либо $4n$ либо $4n+1$ вершину для некоторого целого положительного $n$.
 - Докажите, что для любого целого положительного $n$ существует самодополнительный граф, содержащий $4n$ вершин, а также самодополнительный граф, содержащий $4n+1$ вершину.
 - Докажите, что каждый циклический путь нечетной длины содержит простой цикл.
 - Докажите или опровергните, что объединение двух любых различных простых путей из вершины $u$ в вершину $v$ содержит цикл.
 - Докажите, что граф связен тогда и только тогда когда для любого разбиения его множества вершин $V$ на два непустых непересекающихся множества $X$ и $Y$ существует ребро, соединяющее эти множества.
 - Докажите, что в связном графе любые два самых длинных простых пути имеют общую вершину.
 - Докажите или опровергните, что в связном графе все самые длинные простые пути имеют общую вершину.
 - Обозначим как $\delta(G)$ минимальную степень вершины в графе. Докажите, что если в графе с $n$ вершинами $\delta(G) > (n - 1) / 2$, то он связен.
 - Докажите, что либо граф $G$, либо его дополнение $\overline{G}$ связен.
 - Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
 - Найдите максимальное число ребер в графе с $n$ вершинами, не содержащем четных простых циклов.
 - Докажите, что граф с $n$ вершинами и $n + 4$ ребрами содержит два простых цикла, не имеющих общих ребер.
 - Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
 - Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
 - Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
 - Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это $R^*$.
 - Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
 - Каждое дерево является двудольным графом. А какие деревья являются полными двудольными графами?
 - Доказать, что следующие четыре утверждения для связного графа $G$ эквивалентны: (1) любое ребро является мостом (2) $G$ является деревом (3) любой блок $G$ является $K_2$ (4) любое непустое пересечение связных подграфов $G$ связно.
 - Доказать, что следующие четыре утверждения для связного графа $G$ эквивалентны: (1) $G$ содержит ровно один простой цикл (2) число вершин и ребер $G$ совпадает (3) $G$ можно превратить в дерево удалением ровно одного ребра (4) множество ребер $G$, которые не являются мостами, образуют один простой цикл.
 - Докажите, что любой кубический граф, который содержит точку сочленения, содержит также мост.
 - Докажите, что наименьшее число вершин в кубическом графе, в котором есть мост, равно 10.
 - Докажите, что если $v$ — точка сочленения в $G$, то $v$ не точка сочленения в $\overline G$.
 - Опишите все деревья с диаметром 2.
 - Опишите все деревья с диаметром 3.
 - Опишите дерево с кодом Прюфера $(i, i,\ldots , i)$.
 - Опишите деревья, в коде Прюфера которых нет одинаковых чисел.
 - Докажите, что число помеченных неподвешенных деревьев есть $n^{n-2}$, используя теорему Кирхгофа.
 - Сколько остовных деревьев у полного двудольного графа $K_{n,m}$?
 - Приведите пример графа с двумя непересекающимися остовными деревьями.
 - Какое максимальное количество попарно непересекающихся остовных деревьев может быть в графе с $n$ вершинами?
 - Пусть связный граф $G$ имеет диаметр $d$. Докажите или опровергните, что у $G$ есть остовное дерево с диаметром $d$.
 - Рассмотрим множество остовных деревьев связного графа $G$. Построим граф $S_G$, вершинами которого являются остовные деревья $G$, а две вершины $T_1$ и $T_2$ соединены ребром, если дерево $T_2$ можно получить из $T_1$ удалением одного ребра и добавлением другого. Докажите, что $S_G$ является связным.
 - Докажите, что две вершины $T_1$ и $T_2$ в $S_G$ соединены ребром тогда и только тогда, когда их объединение содержит ровно один простой цикл.
 - Пусть связный граф $G$ содержит $n$ вершин, докажите, что диаметр $S_G$ не превышает $n - 1$.
 - Приведите пример связного графа $G$, содержащего $n$ вершин, для которого граф $S_G$ имеет диаметр $n - 1$.
 - Докажите, что для любого $1 \le k \le n - 1$ существует связный граф $G$, содержащий $n$ вершин, такой что диаметр $S_G$ равен $n - k$.
 - Зафиксируем дерево $T$. Рассмотрим функцию от вершины $x$: $d(x) = \sum_v dist(x, v)$, где $dist(x, v)$ - расстояние между вершинами $x$ и $v$ в ребрах. Пусть $y$ и $z$ - различные соседи вершины $x$. Докажите, что $2d(x) < d(y) + d(z)$.
 - Центром дерева называется вершина $x$, для которой $max_v(dist(x, v))$ минимален. Докажите, что у дерева 1 или 2 центра, и любой центр дерева лежит на его любом диаметре.
 - Барицентром дерева называется вершина $x$, для которой $\sum_v(dist(x, v))$ минимальная. Докажите, что у дерева 1 или 2 барицентра.
 - Докажите, что для любого $k$ существует дерево, для которого расстояние между центром и барицентром не меньше $k$.
 - Докажите, что если в связном графе есть реберно простой цикл длины $k$, то у графа есть не менее $k$ остовных деревьев.
 - Обозначим как $\lambda(G)$ минимальное число ребер, которое нужно удалить в графе, чтобы он потерял связность, $\kappa(G)$ - минимальное число вершин, которое нужно удалить в графе, чтобы он потерял связность (для полного графа полагаем $\kappa(G)=n-1$). Докажите, что $\kappa(G) \le \lambda(G) \le \delta(G)$.
 - Докажите. что для любых $1 \le \kappa(G) \le \lambda(G) \le \delta(G)$ существует граф $G$ с такими параметрами.
 - Докажите, что не существует графов с $\kappa(G) = 3$ и $7$ ребрами.
 - Пусть $G$ - полный двудольный граф, за исключением $K_{2,2}$. Докажите $\lambda(G)=\delta(G)$, почем единственный способ удалить $\lambda(G)$ ребер, чтобы граф потерял связность - удалить все ребра, инцидентные одной из вершин.
 - Посчитать хроматический многочлен цикла $C_n$
 - Посчитать хроматический многочлен колеса $C_n + K_1$.
 - Посчитать хроматический многочлен полного двудольного графа $K_{n,m}$.
 - Докажите, что хроматический многочлен дерева равен $t(t-1)^{n - 1}$.
 - Докажите, что если хроматический многочлен графа равен $t(t-1)^{n - 1}$, то граф является деревом.
 - Приведите пример двух графов, которые не являются деревьями, не являются изоморфными и имеют одинаковые хроматические многочлены.
 - Докажите, что если длина максимального простого нечетного цикла в $G$ есть $k$, то $\chi(G)\le k + 1$.
 - Если степени вершин графа $G$ равны $d_1 \ge d_2 \ge \ldots \ge d_n$, то $\chi(G)\le \max\min\{i, d_i+1\}$.
 - Докажите или опровергните, что если граф $G$ с $n$ вершинами содержит гамильтонов цикл, причем ему принадлежат не все ребра графа, то (а) $\chi(G) \le 1 + n/2$ (б) $\chi(G) \ge 1 + n/2$ .
 - Хроматическое число конъюнкции $G_1\wedge G_2$ графов $G_1$ и $G_2$ двух графов не превосходит хроматических чисел этих графов.
 - Докажите, что $K_{n+1}$ является единственным регулярным графом степени $n$, который имеет хроматическое число $n+1$.
 - Рассмотрим связный граф $G$, не являющийся простым циклом нечетной длины, все простые циклы которого нечетный. Обозначим как $\chi'(G)$ минимальное число цветов, в которое можно раскрасить ребра граф $G$, чтобы ни в какую вершину не входило ребер одного цвета. Докажите, что $\chi'(G)=\Delta(G)$.
 - Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
 - Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.