Материал из Викиконспекты
Определение: |
Пусть [math]M_1 = \langle X, \mathcal{I}_1 \rangle [/math] и [math] M_2 = \langle X, \mathcal{I}_2 \rangle [/math] — два матроида на множестве элементов [math]X[/math] с наборами независимых множеств [math]\mathcal{I}_1[/math] и [math]\mathcal{I}_2[/math]. Положим [math] \mathcal{I} = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2 \mathcal {g} [/math]. Множество [math]\mathcal{I}[/math] удовлетворяет аксиомам независимости, следовательно, [math]\langle X, \mathcal{I} \rangle [/math] — матроид, для которого [math]\mathcal{I}[/math] служит набором независимых множеств. Этот матроид называется объединением матроидов (англ. matroid union) [math]M_1[/math] и [math]M_2[/math], и обозначается [math]M = M_1 \cup M_2 [/math] |
Обычно термин «объединение» применяется, когда носители [math]X[/math] в обоих матроидах одинаковы, однако это не является необходимым, мы можем дополнить их до объединения, заметим, что от этого [math]M_1[/math] и [math]M_2[/math] не перестанут быть матроидами. Если в [math]M_1[/math] и [math]M_2[/math] носители непересекающиеся, то это будет являться прямой суммой матроидов.
Верны следующие утверждения про объединение матроидов:
- Операция объединения матроидов ассоциативна, следовательно, можно говорить об объединении нескольких матроидов.
- В отличие от пересечения матроидов, объединение двух конечных матроидов (англ. finite matroid) всегда является матроидом, однако объединение двух бесконечных матроидов (англ. infinite matroid) не обязательно будет им.
- Объединение применяется к независимым множествам, а не к матроидам в целом, то есть это операция на другом уровне, по сравнению с пересечением матроидов.
Проверка множества на независимость
Задача: |
Дан матроид [math]M = M_1 \cup M_2, M = \langle X, \mathcal{I}\rangle[/math]. Необходимо проверить, является ли некоторое множество [math]U \in X[/math] независимым, то есть, лежит ли оно в [math]\mathcal{I}[/math]. |
Для решения этой задачи преобразуем каждый элемент множества [math]X[/math] в матроиде [math]M_1[/math] в [math](x, 1)[/math], а каждый элемент множества [math]X[/math] в матроиде [math]M_2[/math] в [math](x, 2)[/math]. Мы получили два матроида [math]M'_1 = \langle (X \times \{1\}), \mathcal{I}_1 \rangle [/math] и [math] M'_2 = \langle (X \times \{2\}), \mathcal{I}_2 \rangle [/math].
Определим функцию [math]P_1[/math] : [math] X \times Y \rightarrow X[/math], при этом [math]P_1((x, y)) = x[/math], а для множества [math]B \in X \times Y[/math] выполняется [math]P_1(B) = \{A \subset X \mid \forall x \in A [/math] [math] \exists b \in B : P_1(b) = x\}[/math].
Тогда функция [math]P_1[/math] на носителях матроидов [math]M'_1[/math] и [math]M'_2[/math] будет являться естественным отображением [math](x, i) \rightarrow x[/math], где [math]i \in \{1, 2\}[/math].
Затем определим два матроида, которые нам далее понадобятся:
- [math]M_{\oplus} = M'_1 \oplus M'_2 = \langle (X \times \{1\}) \cup (X \times \{2\}),[/math] [math] \mathcal{I}_{\oplus} = \{A \mid A = A_1 \cup A_2, A_1 \in \mathcal{I}_1, A_2 \in \mathcal{I}_2\} \rangle[/math] — прямая сумма двух матроидов (носители матроидов [math]M'_1[/math] и [math]M'_2[/math] при пересечении будут давать пустое множество).
- [math]M_{P_1} = \langle (X \times \{1\}) \cup (X \times \{2\}),[/math] [math] \mathcal{I}_{P_1} = \{A \mid |P_1(A)| = |A|\} \rangle[/math] — [math]\mathcal{I}_{P_1}[/math] в данном случае будет содержать такие независимые множества, что мощность любого множества [math]A[/math] из [math]\mathcal{I}_{P_1}[/math] будет равна мощности множества, получаемого функцией [math]P_1[/math] над [math]A[/math], то есть [math]A[/math] не будет содержать одновременно [math](x, 1)[/math] и [math](x, 2)[/math].
Теперь перейдём к нашей задаче.
Множество [math]U[/math] является независимым, если ранговая функция [math] r(U) = |U|[/math].
Можно заметить, что в матроиде [math]M[/math] выполняется [math]r(U) = \max\limits_{A \mid A \in \mathcal{I}_{\oplus}, A \in \mathcal{I}_{P_1}, P_1(A) \subset U} |A|[/math].
Таким образом, мы свели задачу о проверке множества на независимость в объединении к нахождению мощности максимального независимого множества в пересечении матроидов [math]M_{\oplus}[/math] и [math]M_{P_1}[/math]. С помощью алгоритма построения базы в пересечении матроидов найдем размер максимального подмножества [math]U' \mid P_1(U') = U[/math] в пересечении наборов независимых множеств матроидов.
Доказательство того, что обединение матроидов является матродидом
Определение: |
[math]M_1 = \langle X_1, I_1 \rangle [/math] и [math] M_2 = \langle X_2, I_2 \rangle [/math] — матроиды. Тогда [math] M_1 \cup M_2 = \langle X = X_1 \cup X_2, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle [/math]. |
Лемма: |
[math]M = \langle X, I \rangle[/math] — матроид, [math] f \colon X \to Y[/math]. Тогда [math]M_1 = \langle Y, I_1 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle [/math] является матроидом. |
Доказательство: |
[math]\triangleright[/math] |
Докажем аксиомы независимости для [math] I_1 [/math].
- [math]\varnothing \in I_1[/math]
[math] \varnothing = f(\varnothing) \in I_1 [/math]
- [math]B \subset A, A \in I_1 \Rightarrow B \in I_1[/math]
[math]A \in I_1[/math], значит [math]\mathcal {9} S, S \in I[/math], такое, что [math] A = f(S)[/math]. [math]B = f(S \setminus f^{-1} (A \setminus B)), (S \setminus f^{-1} (A \setminus B)) \subset S \Rightarrow (S \setminus f^{-1} (A \setminus B)) \in I[/math]. Значит [math]B \in I_1[/math].
- Пусть [math] A \in I_1, A = f(S), B \in I_1, B = f(T), |A| \gt |B|[/math]. Докажем, что [math] \mathcal {9} y \in A \setminus B, B \cup \mathcal{f} y \mathcal {g} \in I_1[/math]
[math]A = f(S) \Rightarrow \mathcal {9} S_1 \subset S, A = f(S_1), |S_1| = |A| [/math]. [math]B = f(T) \Rightarrow \mathcal {9} T_1 \subset T, B = f(T_1), |T_1| = |B| [/math]. [math]S_1 \in I, T_1 \in I[/math] по второй аксиоме для [math]M[/math]. [math] |S_1| \gt |T_1| [/math], значит по третьей аксиоме для [math]M[/math], [math]\mathcal {9} x \in S_1 \setminus T_1, T_1 \cup \mathcal{f} x \mathcal {g} \in I[/math]. Следовательно [math]f(T_1 \cup \mathcal{f} x \mathcal {g}) \in I_1[/math]. [math]f(T_1 \cup \mathcal{f} x \mathcal {g}) = f(T_1) \cup f(x) = B \cup f(x)[/math]. Значит [math]\mathcal {9} y = f(x) \in A \setminus B , B \cup \mathcal{f} y \mathcal {g} \in I_1[/math]
|
[math]\triangleleft[/math] |
Теорема: |
Объединение матроидов является матроидом. |
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим матроиды [math]M_1[/math] и [math]M_2[/math] из определения объединения матроидов. Из леммы знаем, что [math] M_1 \oplus M_2= \langle X = X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g}, I = \mathcal {f} A \mid A = A_1 \cup A_2, A_1 \in I_1, A_2 \in I_2 \mathcal {g} \rangle [/math] является матроидом. Пусть [math]f \colon X_1 \times \mathcal {f} 1 \mathcal {g} \cup X_2 \times \mathcal {f} 2 \mathcal {g} \to X_1 \cup X_2 [/math], такая, что [math]f(x \times \mathcal {f} 1 \mathcal {g}) \rightarrow x [/math], [math]f(x \times \mathcal {f} 2 \mathcal {g}) \rightarrow x [/math]. Тогда по лемме [math] M_3 = \langle X_1 \cup X_2, I_3 = \mathcal {f} f(A) \mid A \in I \mathcal {g} \rangle[/math] — матроид, в котором независимым множествам соответствуют объединения независимых множеств в [math]M_1[/math] и [math]M_2[/math]. То есть [math]M_3 = M_1 \cup M_2[/math]. |
[math]\triangleleft[/math] |
См. такжеИсточники информации