EM-алгоритм
Содержание
Определение
Алгоритм EM --- алгоритм поиска максимума правдоподобия параметров для решения задач, где некоторые переменные не являются наблюдаемыми.
Алгоритм ищет параметры модели итеративно, каждая итерация состоит из двух шагов:
E(Expectation) шаг, в котором находится распределение скрытых переменных используя значение наблюдаемых переменных и текущего значения параметров.
M(Maximisation) шаг --- пересчет параметров, находя максимум правдоподобия исходя из распределения скрытых переменных, полученных на E-шаге.
Задача разделения смеси распределений
Общий алгоритм
Необходимо описать плотность распределения функции на X как сумму k функций, которые можно рассматривать как элементы параметрического семейства функций
где - априорная вероятность j компоненты распределения.
Задача разделения смеси заключается в том, чтобы, имея выборку случайных и независимых наблюдений из смеси , зная число и функцию , оценить вектор параметров
E-шаг:
Введем обозначение: это и будут скрытые параметры данной задачи - апостериорная вероятность того, что обучающий объект получен из -й компоненты
По формуле Байеса справедливо равенство:
Таким образом при зная значение параметров легко найти скрытые переменные.
Перейдем к M-шагу.
Посчитаем для аддитивности логарифм правдоподобия:
при условии имеет смысл рассматривать лагранжиан задачи:
Умножим на
Так как можно заменить порядок суммы:
.А так как
Приравняв к нулю лагранжиан по
Таким образом на M-шаге необходимо взять среднее значение
и решить k независимых оптимизационных задач.Разделение смеси гауссиан
Важным на практике примером является случай, когда параметрическое семейство - нормальные распределения. Параметрами функций будут являться матожидание и дисперсия.
— вектор параметров,
k-means как EM алгоритм
Скрытыми переменными в данной задаче являются классы, к которым относятся объекты для кластеризации. Сами же параметры это центры масс классов. На шаге E - распределяются все объекты по классам исходя из расстояния от центра, на шаге M находится оптимальное месторасположение центра.
Аналогично рассматривается и алгоритм c-means. Скрытые переменные здесь будут вероятности принадлежности к классам, которые находятся на E-шаге по расстоянию от центра. Центр так же рассчитывается на M-шаге исходя из скрытых переменных.
Реализация на python
import numpy as np import matplotlib.pyplot as plt from sklearn import cluster, datasets, mixture from sklearn.preprocessing import StandardScaler from itertools import cycle, islice np.random.seed(12) # Создаем datasets с использованием стандартных sklearn.datasets n_samples = 2000 random_state = 170 noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05) noisy_moons = datasets.make_moons(n_samples=n_samples, noise=.05) blobs = datasets.make_blobs(n_samples=n_samples, random_state=8) varied = datasets.make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state) # Создаем анизатропно разделенные данные X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state) transformation = [[0.6, -0.6], [-0.4, 0.8]] X_aniso = np.dot(X, transformation) aniso = (X_aniso, y) # Выставляем параметры для matplotlib.pyplot plt.figure(figsize=(9 * 2 + 3, 12.5)) plt.subplots_adjust(left=.02, right=.98, bottom=.001, top=.96, wspace=.05, hspace=.01) plot_num = 1 defaul_n = 3 # Варьируем значение количества классов в зависимости от данных, ведь для нас это гиперпараметр datasets = [ (varied, defaul_n), (aniso, defaul_n), (blobs, defaul_n), (noisy_circles, 2)] for i_dataset, (dataset, n_cluster) in enumerate(datasets): X, y = dataset # Нормализация данных X = StandardScaler().fit_transform(X) # Непосредственно наш алгоритм - Gaussian Mixture gmm = mixture.GaussianMixture(n_components=n_cluster, covariance_type='full') # Для сравнения берем алгоритм - K-means two_means = cluster.KMeans(n_clusters=n_cluster) clustering_algorithms = ( ('GaussianMixture', gmm), ('KMeans', two_means) ) for name, algorithm in clustering_algorithms: # Этап обучения algorithm.fit(X) # Применяем алгоритм y_pred = algorithm.predict(X) # Рисуем результаты plt.subplot(len(datasets), len(clustering_algorithms), plot_num) if i_dataset == 0: plt.title(name, size=18) colors = np.array(list(islice(cycle(['#377eb8', '#ff7f00', '#4daf4a']), int(max(y_pred) + 1)))) plt.scatter(X[:, 0], X[:, 1], s=10, color=colors[y_pred]) plt.xlim(-2.5, 2.5) plt.ylim(-2.5, 2.5) plt.xticks(()) plt.yticks(()) plot_num += 1 plt.show()
Как и следовало ожидать, алгоритм работает на некоторых данных лучше чем k-means, однако есть данные, с которыми он не справляется без дополнительных преобразований.