Практики реализации нейронных сетей
Содержание
Аугментация данных
Дропаут
Функции активации
Одним из важнейших аспектов глубокой нейронной сети являются функции активации.
Определение: |
Функция активации (англ. activation function) определяет выходной сигнал нейрона в зависимости от результата взвешенной суммы входов и порогового значения. |
Рассмотрим нейрон Z с выходным значением
, где и — вес и входное значение -ого входа, а — смещение. Полученный результат передается в функцию активации, которая решает рассматривать этот нейрон как активированный, или его можно игнорировать.Ступенчатая функция
Ступенчатая функция (англ. binary step function) является пороговой функцией активации. То есть если
больше или меньше некоторого значения, то нейрон становится активированным. Такая функция отлично работает для бинарной классификации. Но она не работает, когда для классификации требуется большее число нейронов и количество возможных классов больше двух.Линейная функция
Линейная функция (англ. linear function) представляет собой прямую линию, то есть
, а это значит, что выходное значение этой функции активации пропорционально входному. В отличии от предыдущей функции, она позволяет получить диапазон значений на выходе, а не только бинарные 0 и 1, что решает проблему классификации с большим количеством классов. Но у линейной функции есть две основных проблемы:- Невозможность использования метода обратного распространения ошибки. Так как в основе этого метода обучения лежит градиентный спуск, а для того чтобы его найти, нужно взять производную, которая для данной функции активации — константа и не зависит от входных значений. То есть при обновлении весов нельзя сказать улучшается ли эмпирический риск на текущем шаге или нет.
- Рассмотрим нейронную сеть с несколькими слоями с данной функцией активации. Так как для каждого слоя выходное значение линейно, то они образуют линейную комбинацию, результат которой является линейной функцией. То есть финальная функция активации на последнем слое зависит только от входных значений на первом слое. Это значит, что любое количество слоев может быть заменено всего одним слоем.
Сигмоидная функция
Сигмоидная функция (англ. sigmoid function), которую также называет логистической функцией (англ. logistic function), является гладкой монотонно возрастающей нелинейной функцией —
. И так как эта функция нелинейна, то ее можно использовать в нейронных сетях с множеством слоев, а также обучать эти сети методом обратного распространения ошибки. Сигмоида ограничена двумя горизонтальными асимптотами и , что дает нормализацию выходного значения каждого нейрона. Кроме того, для сигмоидной функции характерен гладкий градиент, который предотвращает "прыжки" при подсчете выходного значения. У этой функции есть еще одно преимущество, для значений и , "прижимается" к одной из асимптот, что позволяет делать четкие предсказания классов.Несмотря на множество сильных сторон сигмоидной функции, у нее есть значительные недостатки. Производная такой функции крайне мала во всех точках, кроме сравнительно небольшого промежутка. Это сильно усложняет процесс улучшения весов с помощью градиентного спуска. Более того, эта проблема усугубляется в случае, если модель содержит много слоев. Данная проблема называется проблемой исчезающего градиента.[1]
ReLU
Функция ReLU имеет производную равную 0 для всех отрицательных значениях и 1 для положительных. Таким образом, когда обучение происходит на датасетах разумного размера, обычно находятся точки данных, дающие положительные значения для любого выбранного узла. Таким образом, средняя производная редко бывает близка к 0, что позволяет продолжать градиентный спуск.
Rectified Linear Unit — это наиболее часто используемая активационная функция при глубоком обучении. Данная функция возвращает 0, если принимает отрицательный вход, в случае же положительного входа, функция возвращает само число. Таким образом функция может быть записана как
.Функция ReLU отлично работает в большинстве приложений, в результате чего она получила широкое распространение. Данная функция позволяет правильно учитывать нелинейности и взаимодействия.