Примеры кода на R

Материал из Викиконспекты
Версия от 18:27, 20 апреля 2020; KristinaSharaeva (обсуждение | вклад) (Примеры алгоритмов)
Перейти к: навигация, поиск

Особенности написания кода на R

Язык R изначально создавался как язык программирования для работы с графикой и статистической обработки данных. Поэтому он отличается большим количеством реализованных статистических алгоритмов, на основе которых можно создавать модели и алгоритмы машинного обучения.

Язык постоянно расширяется за счёт новых библиотек (пакетов). Для импорта одного пакета необходимо прописать в файле следующие строки:

install.packages("packageName")
require("packageName")

Для того чтобы импортировать пакет с его зависимостями в код следует включить следующие строки:

library("packageName")

Описание известных пакетов

Для языка R написано много пакетов, каждый из которых предназначен для решения определенного круга проблем. Например, для обработки данных или реализации основных алгоритмов. В статье представлено несколько наиболее часто используемых пакетов.

Пакеты для обработки данных

Pipelearner[1]

Пакет предоставляет базовые возможности для разбиения набора данных на блоки для обучения моделей. В основе пакета лежит концепция работы конвейера. Пакет хорошо документирован, все непонятные моменты можно прояснить, просто изучив структуру объекта на каждом этапе работы алгоритма.

MICE [2]

Пакет MICE используется для заполнения пропущенных значений в данных. При этом нет необходимости думать о типах значений: для каждого из них в пакете предусмотрено заполнение по умолчанию.

Ggplot2 [3]

Данный пакет используется для отрисовки данных и графиков.

Пакеты с реализованными алгоритмами машинного обучения

Caret [4]

В данном пакете представлены модели для регрессии и классификации, а также большая часть популярных метрик. В настоящее время имеется возможность использовать более 180 различных алгоритмов. Основная функция в составе Caret - функция train(). Параметры обучения в ней задаются аргументом trControl, а оценка качества модели - аргументом metric. Отличительными особенностями Caret является универсальность используемых команд, наличие автоматического подбора гиперпараметров для алгоритмов, в также наличие параллельных вычислений.

Mlr [5]

В пакете Mlr представлены модели для регрессии, классификации, кластеризации и анализа выживаемости, а также широкие возможности для оценки качества (в том числе функции для анализа ROC-кривых). Есть поддержка параллельных вычислений и конвейерных операций.

H2O [6]

В пакете представлены линейные модели, такие как градиентный бустинг, PCA, GLRM, KNN, Radom forest, наивный Байесовский классификатор. Сильная сторона этой библиотеки – работа с большими объемами данных и поддержка многопоточных вычислений.Однако в ней нет возможности задавать параметры используемых алгоритмов

Примеры алгоритмов

В интернете много хороших примеров реализации алгоритмов на R, но среди них хотелось бы особо отметить один учебник[7] c портала coderlessons.com. В нем представлена реализация основных алгоритмов в порядке, удобном для изучения.

Задачи регрессии

Линейная регрессия

#$$reading data
data <- read.csv("input.csv", sep = ',', header = FALSE)

#evaluating linear regression model
model <- lm(data$x ~ data$y)

#getting summary 
print(summary(model))

#visualizing data 
plot(data$y, data$x)
lines(data$y, predict(fit), col = 'red')

Множественная регрессия

#$$reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

#evaluating regression model
model <- lm(target ~ x + y + z, data = rdata)

#getting summary 
print(summary(model))

Логистическая регрессия

Логистическая регрессия – это модель регрессии, в которой переменная ответа принимает значения 0 или 1 (True или False). Реализация на языке R представлена в следующем фрагменте:

#$$reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

#evaluating model
model = glm(formula = target ~ x + y + z, data = rdata, family = binomial)

#printing summary
print(summary(model))

Деревья решений, случайный лес

Деревья решений

Для создания деревьев решений в R используется функция ctree из пакета party.

#importing package 
install.packages("party")

#reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

#evaluating model
  output.tree <- ctree(target ~ x + y + z, data = rdata)

#plotting results
plot(output.tree)

Случайный лес

Для создания случайного леса необходимо импортировать пакет randomForest

#importing packages 
install.packages("party")
install.packages("randomForest")

#reading data
rdata <- read.csv("input.csv", sep = ',', header = FALSE)

#creating the forest
output.forest <- randomForest(target ~ x + y + z, 
           data = rdata)

#getting results
print(output.forest) 

Наивный Бейесовский классификатор

#$$importing package and it's dependencies
library(e1071)

#reading data
data <- read.csv("input.csv", sep = ',', header = FALSE)

#splitting data into training and test data sets
index <- createDataPartition(y = data$target, p = 0.8,list = FALSE)
training <- data[index,]
testing <- data[-index,]

#create objects x and y for predictor and response variables
x = training[,-9]
y = training$target

#training model
model = train(x,y,'nb',trControl=trainControl(method='cv',number=10))

#predicting results
predictions <- predict(model, newdata = testing)

SVM

#$$ importing package and its' dependencies
library(caret)

#reading data
data <- read.csv("input.csv", sep = ',', header = FALSE)

#splitting data into train and test sets
index <- createDataPartition(y = data$target, p=0.8, list = FALSE)
training <- data[index,]
testing <- data[-index,]

#evaluating model 
fit <- train(target ~ x + y + z,
             data = train_flats,
             method = "svmRadial",
             trControl = trainControl(method = "repeatedcv", number = 10, repeats = 3))

#printing parameters
print(fit)

Кластеризация

Для реализации алгоритма кластеризации k-средних используется пакет ClusterR. В нем реализовано 2 функции: KMeans_arma и KMeans_rcpp. В примере далее рассмотрена реализация с использованием функции KMeans_arma.

#$$ importing package and its' dependencies
library(ClusterR)

#reading data
data <- read.csv("data.csv")

#evaluating model
model = KMeans_arma(data, clusters = 2, n_iter = 10, seed_mode = "random_subset", 
                 verbose = T, CENTROIDS = NULL)

#predicting results
predictions = predict_KMeans(test_data, model)

См. также

Примечания