Теорема Сэвича. Совпадение классов NPS и PS
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Теорема Сэвича
Теорема: |
Для любой справедливо: . То есть, если недетерминированная машина Тьюринга может решить проблему, используя памяти, то существует детерминированная машина Тьюринга, которая решает эту же проблему, используя не больше, чем памяти. |
Доказательство: |
Рассмотрим машину Тьюринга с входной и рабочей лентой. Ее конфигурацию можно закодировать так: закодировать позицию и содержание рабочей ленты (займет памяти), позицию входной ленты (займет памяти). Так как , то размер конфигурации составит .Пусть Reach(I, J, k): if (k = 0) return (IJ) or (I = J) // запись (I J) означает возможность перехода МТ из конфигурации I в конфигурацию J за один шаг else for (Y) // перебор промежуточных конфигураций if Reach(I, Y, k-1) and Reach(Y, J, k-1) return true return false Эта функция имеет глубину рекурсии , на каждом уровне рекурсии использует памяти для хранения текущих конфигураций.Рассмотрим машину Тьюринга , распознающую язык . Эта машина может иметь конфигураций. Объясняется это следующим образом. Пусть имеет состояний и символов ленточного алфавита. Количество различных строчек, которые могут появиться на рабочей ленте . Головка на входной ленте может быть в одной из позиций и в одной из на рабочей ленте. Таким образом, общее количество всех возможных конфигураций не превышает .Рассмотрим функцию, которая по заданному слову проверяет его принадлежность языку : Check(x, L):
for (T) // перебор конфигураций, которые содержат допускающие состояния
if Reach(S, T,
)
return true
return false
Если слово принадлежит языку, то оно будет допущено, так как будут рассмотрены все возможные пути допуска. Это обеспечивается указанной нам глубиной рекурсии для функции В итоге функция . И если слово не допускается за шагов (количество всех возможных конфигураций), то оно уже гарантированно не может быть допущено. имеет глубину рекурсии , на каждом уровне рекурсии используется памяти. Тогда всего эта функция использует памяти. |
Следствие
Вывод
.
Известно, что
. Так что хотя бы одно из рассмотренных включений — строгое, но неизвестно, какое. Принято считать, что все приведенные выше включения — строгие.См. также
Источники
- Michael Sipser. Introduction to the theory of computation.