Действие группы на множестве
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Пусть имеется множество
.Определение: |
Группа действует на , если любых и определено действие элемента на элемент (обозначаемое ), обладающее следующими свойствами:
|
Примеры
- Действие группы на себя. Пусть — группа с операцией и множество . Зададим отображение , такое что . Тогда все свойства из определения выполнятся вследствие соответствующих свойств группы. Таким образом группа действует на . Такое действие называется "действие левыми сдвигами".
- Действие сопряжением. Пусть — группа с операцией и множество . Зададим отображение , такое что . Все свойства из определения выполнены, следовательно группа действует на .
Орбита, Стабилизатор и Фиксатор
Определение: |
Орбита | элемента — это множество .
Определение: |
Стабилизатор | элемента — это множество .
Определение: |
Фиксатор | элемента — это множество .
Свойства
Утверждение: |
Стабилизатор любого элемента подгруппой . является |
Пусть Пусть . Тогда и . Поэтому, . Следовательно, . . Тогда , следовательно, . Поэтому, и . |
Утверждение: |
|
Видно, что бинарное отношение леммы Бернсайда.
является отношением эквивалентности на и разбивает его на независимые классы эквивалентности − орбиты. Можно поставить задачу о нахождении количества орбит, которая решается с помощью