Свойства цепных дробей
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Числитель и знаменатель цепной дроби можно записать в виде полиномов от переменных . При этом, поскольку числитель каждой дроби является знаменателем следующей, полиномы для числителей и знаменателей имеют одинаковый вид. Таким образом, цепная дробь представима в виде , где — некоторый полином от переменной.
Свойства
- — полином от переменной, состоящий из мономов.
- .
- .
- Для числителей и знаменателей -ой подходящей дроби верны следующие формулы:
Доказательства свойств
| Лемма (1): |
. |
| Доказательство: |
|
. Следовательно . |
| Лемма (2): |
— полином от переменной, состоящий из мономов. |
| Доказательство: |
|
База. При : — полином от одной переменной с одним мономом. — два монома. Переход. Пусть верно, что в монома. Докажем, что в монома. В нет мономов, содержащих . Значит в слагаемых. |
| Теорема (1): |
| Доказательство: |
|
База: Пусть верно для всех . Докажем для .
Обобщим последнюю формулу и докажем по индукции. Пусть верно : . Докажем для больших : . Используя условие теоремы для получаем :
Следовательно получаем : . |
| Лемма (3): |
. |
| Доказательство: |
|
Эта формула аналогична формуле из Леммы 1, за исключением того, что "отщепляются" с другого конца. Для получения формулы достаточно скомбинировать результаты Леммы 1 и Теоремы 1. |
| Лемма (4): |
. |
| Доказательство: |
|
по рекуррентным соотношениям для числителей и знаменателей подходящих дробей. Возьмём детерминант левой и правой части. Получим : . Так как при то получаем, что лемма доказана. |