Эволюционные алгоритмы многокритериальной оптимизации, основанные на индикаторах. Гиперобъем
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
В задачах многокритериальной оптимизации встает проблема сравнения множеств решений. Данную проблему обычно решают введением функции, которая сопоставляет множеству решений вещественное значение. Такие функции называются индикаторами.
Содержание
Применение
В работе [1] предлагают с помощью индикатора ввести следующую функцию приспособленности: , где — популяция, — некая константа, зависящая от текущей задачи. Данная функция приспособленности колличественно измеряет потери в качестве поколения при удалении особи.
Для пересчета значений функции приспособленности при удалении особи
из поколения достаточно выполнения следующего условия:
В работе [2] детально рассматривается применение индикатора гиперобъема в эволюционных алгоритмах.
Основные определения
Гиперобъем
Определение: |
Индикатор называется оптимальным по Парето(Pareto-compliant), если для любых двух множеств решений доминирует . | и значение индикатора для больше значения индикатора для тогда и только тогда, когда
Дадим определение индикатора гиперобъема[3] .
Определение: |
Пусть дано множество решений по Лебегу. | . Пусть также множество всех решений усечено некоторой точкой . Тогда , где через обозначена мера множества
Например, пусть
и , тогда .Для задач двукритериальной оптимизацйии будем рассмотрим функции вида:
, где убывает и .Множество всех таких функций обозначим через
. Множество всех множеств решений обозначим через .Утверждение (1): |
Пусть , тогда существует, не обязательно единственное, множество решений , которое максимизирует значение на . |
Пусть нижняя граница ., где . Рассмотрим ряд множеств решений .
Получается, что — полунепрерывна сверху, следовательно, экстремум достигается на компакте. |
Аппроксимация функции и ее свойства
Определение: |
Множество решений | называется -аппроксимацией функции , если .
Определение: |
Коэффициентом аппроксимации функции | на называется -аппроксимация .
Определение: |
Оптимальный коэффициент аппроксимации | .
Теорема (1): | ||||||||||
Доказательство: | ||||||||||
Получили .Пусть Теперь на интервале . — это фронт Парето из слоя. Предложим, множество решений из точек. По принципу Дирихле получается, что хотя бы на одном уровне нет ни одного решения. Это означает, что верхняя граница этого уровня аппроксимируется значением . | ||||||||||
Утверждение (5): |
Оба утверждения следуют из теоремы(1). Для доказательства первого утверждения достаточно заметить, что Второе утверждение следует из того, что . . |
Следствие: .
Заключение
В данной статье было введено понятие индикатора и его применимости. Также мы рассмотрели понятие аппроксимации функции и доказали ее основные свойства.
В статье Связь между максимизацией гиперобъема и аппроксимацией Парето-фронта представлено докательство того, что для точек оптимальный коэффициент апроксимации для данного Парето-фронта ( ) и верхняя граница коэффициента аппроксимации для множества, максимизирующего значение индикатора гиперобъема ( ) одинаковы и равны .