Граф компонент рёберной двусвязности

Материал из Викиконспекты
Перейти к: навигация, поиск
НЕТ ВОЙНЕ

24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.

Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.

Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.

Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.

Антивоенный комитет России

Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки.


Определение:
Пусть граф [math]G[/math] связен. Обозначим [math]A_1\ldots A_n[/math] — компоненты рёберной двусвязности, а [math]a_1\ldots a_m[/math]мосты [math]G[/math]. Построим граф [math]T[/math], в котором вершинами будут [math]A_1\ldots A_n[/math], а рёбрами — [math]a_1\ldots a_m[/math], соединяющими соответствующие вершины из соответствующих компонент рёберной двусвязности. Полученный граф [math]T[/math] называют графом компонент рёберной двусвязности (англ. costal doubly-linked components graph) графа [math]G[/math].
Граф [math]G[/math]
Граф [math]T[/math]
Лемма:
В определении, приведенном выше, [math]T[/math]дерево.
Доказательство:
[math]\triangleright[/math]
  1. [math]T[/math] — связно. (Следует из определения)
  2. В [math]T[/math] нет циклов. (Пусть какие-то две смежные вершины [math]A_k[/math] и [math]A_l[/math] принадлежат какому-то циклу. Тогда ребро [math](A_k, A_l)[/math] принадлежит этому же циклу. Следовательно, существуют два рёберно-непересекающихся пути между вершинами [math]A_k[/math] и [math]A_l[/math], т.е. [math](A_k, A_l)[/math] — не является мостом. Но [math](A_k, A_l)[/math] — мост по условию. Получили противоречие)
Из этого следует, что [math]T[/math] — дерево.
[math]\triangleleft[/math]

См. также