Соотношение вероятностных классов
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Теорема: |
. |
Доказательство: |
Утверждение является очевидным, так как программы, удовлетворяющие ограничениям , также удовлетворяют ограничениям класса .Докажем, что . Для этого, покажем, что . Тогда из будет следовать требуемое.1) . Достаточно вместо возвращать .2) . Достаточно вместо возвращать .3) . Пусть программа удовлетворяет ограничениям и ошибается на словах из языка с вероятностью не более , а программа удовлетворяет ограничениям и ошибается на словах не из языка с аналогичной вероятностью. Построим программу для :Вероятность вывести (x) if (x) = 0 return 0 if (x) = 1 return 1 return ? есть . |
Теорема: |
. |
Доказательство: |
1. . Если в программе для заменить все вызовы random() на недетерминированный выбор, то получим программу для с ограничениями .2. . Приведем программу с ограничениями класса , которая разрешает . Пусть функция infair_coin() моделирует нечестную монету, а именно возвращает единицу с вероятностью , где мы определим позже, и ноль с вероятностью . Пусть также — верификатор сертификатов для . Тогда будет выглядеть следующим образом:(x) c <- случайный сертификат if (x, c) return 1 return unfair_coin() Необходимо удовлетворить условию .Пусть . В этом случае вернет и результат работы программы будет зависеть от нечестной монеты. Она вернет с вероятностью .Пусть по формуле полной вероятности , где — вероятность угадать правильный сертификат. Заметим, что поскольку длина всех сертификатов ограничена некоторым полиномом и существует хотя бы один правильный сертификат, . Найдем из неравенства : . Тогда; ; . Достаточно взять 3. . Из сделанного выше замечания следует, что работу функции unfair_coin() можно смоделировать с помощью не более чем вызовов random(). Также учтем, что длина сертификата и время работы полиномиальны относительно . Таким образом, мы построили программу , удовлетворяющую ограничениям класса . . Пусть — программа для языка . Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для будет перебирать все возможные вероятностные ленты нужной полиномиальной длины и запускать на них . Ответом будет или в зависимости от того, каких ответов оказалось больше. |
Теорема: |
. |
Доказательство: |
Пусть — программа для . Программу для определим следующим образом:(x) u <- (x) v <- (x) return u or v Пусть . В этом случае вероятность ошибки равна .Пусть Аналогично доказывается, что . Тогда с вероятностью будет верно и вернет правильный ответ. . |